Abstract:
A transmission Raman spectroscopy apparatus has a light source for generating a light profile on a sample, a photodetector having at least one photodetector element, collection optics arranged to collect Raman scattered light transmitted through the sample and direct the Raman light onto the at least one photodetector element and a support for supporting the sample. The support and light source are arranged such that the light profile can be moved relative to the sample in order that the at least one photodetector element receives Raman scattered light generated for different locations of the light profile on the sample.
Abstract:
A fluorometer for measuring a particular fluorescence emanating from a specimen, including producing a burst of concentrated light energy and directing the concentrated light energy toward the specimen to produce a fluorescence from the specimen including the particular fluorescence. Preferably producing an image of the fluoresence. Detecting the fluorescence and producing a signal in accordance with the fluorescence. Controlling the passage of the image of the fluorescence for detecting within a particular time period so as to optimize the detection of the particular fluorescence. Timing the operation to sequence the detection of the fluorescence within the particular time period after the production of the burst of concentrated light energy. Scanning the fluorescence from the specimen for forming signals representative of the fluorescence from the specimen. Analyzing the signals to enhance the portion of the signal representing the particular fluorescence relative to the portion of the signal.
Abstract:
A method for microphotometering individual volume elements of a microscope specimen, comprising generating a luminous dot or cursor and progressively illuminating a plurality of part elements in the focal plane of the microscope (30) through the specimen. The mutual position between the specimen and the focal plane is then changed and a plurality of part elements in the focal plane are illuminated. Reflected and/or fluorescent light and transmitted light respectively created by the illumination is collected, detected and stored for generating a three-dimensional image of that part of the specimen composed of the volume elements. Illumination of multiples of part elements is deflected by deflecting the luminous cursor or by moving the specimen or by both deflecting the cursor and also displacing the specimen. The change in the relative mutual position between the specimen and the focal plane of the microscope (30) is effected either by displacing the specimen or the objective. Apparatus for carrying out the method include a specimen table (301), a microscope objective and light source (31, 32, 33). The table (301) or the objective are arranged for stepwise movement along the main axis of the microscope synchronously with punctilinear light scanning of the specimen. The table (301) is arranged for stepwise movement at right angles to the main axis and/or the light source (31, 32, 33) is arranged for deflection over the focal plane through the specimen.
Abstract:
A specific small area of a crystal sample (11) is scanned by a laser beam in a spiral pattern (2a, 2b). The laser beam is reflected different amounts for different beam positions to produce a reflectance pattern indicative of crystallographic orientation. The reflected beam radiation may be determined with a photodetector (12) and the reflectance pattern may be interpreted with circuitry (13) which also controls steering of the beam.
Abstract:
La présente invention est relative à un appareil de détection et de numération de particules fluorescentes ou rendues fluorescentes, portées par un support solide et à un procédé de détection desdites particules, à l'aide dudit appareil. L'appareil de détection et de numération de particules, présentes normalement, ou éventuellement contenues en tant que contaminants, dans un fluide liquide ou gazeux, ou dans un produit notamment alimentaire ou d'hygiène, par fluorimétrie, comprend une source lumineuse (10), des moyens de focalisation (12) du faisceau issu de ladite source lumineuse et au moins un moyen de détection (40) de la lumière fluorescente émise par les particules (60) présentes, et comprend en outre : - un support (50) approprié à la collecte des particules naturellement fluorescentes ou rendues fluorescentes à l'aide d'au moins un colorant approprié choisi dans le groupe qui comprend les colorants vitaux, les colorants de viabilité positive et des substances fluorescentes portées par des anticorps et/ou des sondes nucléiques, - des moyens de balayage (21, 31, 35) de la totalité de la surface du support à analyser, par ledit faisceau lumineux, - et, un microprocesseur (45) de traitement pourvu d'au moins un moyen d'enregistrement et de comptage simultané des signaux électriques transmis par le/les dispositifs de détection (40) et le système de balayage (21, 31, 35).