Abstract:
The invention relates to a process for preparing an aqueous dispersion of a polymer P, which comprises the emulsion polymerization of vinyl acetate, an acrylate monomer, which is a C 1 -C 10 alkyl acrylate or a C 1 -C 10 methacrylate, an α,β-ethlyenically unsaturated C3-C8 carboxylic acid and at least one out of glycidyl methacrylate, glycidyl acrylate, allyl methacrylate and allyl acrylate, in the presence of a starch derivative. Optionally, an additional monomer is an ethylenically unsaturated sulfonic acid, an ethylenically unsaturated other monomer or both of them. Furthermore, the aqueous polymer dispersion obtainable from this process and a powder form thereof are disclosed. They are useful for a paper coating slip containing one of the aforementioned forms. A paper or a cardboard, which is coated with the paper coating slip, shows surface strength, which is expressed by a good dry pick resistance, a good wet pick resistance or good offset test results. The aqueous polymer dispersion or the powder form thereof is furthermore useful as a binder.
Abstract:
An object of the present invention is to provide an aqueous dispersion for use in a cosmetic, which has both the flexibility and hair styling properties (hair set retention properties), and which allows for easily re-styling hair when the hair style once set has been disturbed; and a cosmetic including the same. In the above mentioned aqueous dispersion and the cosmetic, a polyurethane is used, which is obtainable from a polyol component including at least one type of a polyether polyol and a polyester polyol, and a polyvalent isocyanate component, wherein the polyol component includes: a polyether polyol containing as a major component a structural unit derived from a polyalkylene glycol having from 2 to 4 carbon atoms, and having a number average molecular weight of400 or more and 4,000 or less; or a polyester polyol containing a structural unit derived from at least one type of dicarboxylic acid selected from the group consisting of phthalic acid, isophthalic acid and terephthalic acid.
Abstract:
The present invention is a composition comprising a) a stable aqueous dispersion of polymer particles having one or more structural units of i) a polyurea macromer; and ii) an acrylate, a methacrylate, a vinyl ester, or a styrene monomer, or a combination thereof; and/or b) an aqueous mixture of a i) polyurea macromer polymer particles; and b) acrylate, methacrylate, vinyl ester, or styrenic polymer particles, or a combination thereof, wherein the polyurea macromer is characterized by the following formula I: where A 1 , A 2 , R 1 , R 2 , and R 3 are as defined herein. In another aspect, the present invention is the compound of Formula I. Compositions prepared using the compound of the present invention can be used to form coatings with excellent balance of low temperature film formation, hardness, and flexibility.
Abstract:
The invention relates to a papermaking agent composition, preferably in powder form, which comprises a water-soluble polymer, which comprises 21-30 mol-% of vinylamine units and has an average molecular weight of at least 1 000 000 Da. The invention relates also to a method for treating of fiber stock in manufacture of paper, board or the like, where a thick fiber stock is obtained, it is diluted to a thin fiber stock having a consistency
Abstract:
Disclosed are binder compositions containing, as essential components, at least one dispersion polymer P that has a glass transition temperature ≤20 °C and contains ethyl acrylate in a polymerized form, and at least one mineral binder M which features low VOC emission after hardening.
Abstract:
The present invention provides aqueous polyolefin dispersion compositions for use in metal coatings, such as can coatings, comprising one or more polyolefin base polymer, one or more at least partially neutralized olefinic stabilizing agent having an acid number (AN) of from 80 to 250, preferably, a polyolefin stabilizing agent, such as an olefin-carboxylic acid copolymer or a blend of two such polymers, an optional coupling agent having an acid number (AN) of from 10 to 70 and a melt index of from 500 to 5,000,000 grams of polymer melt passing in 10 minutes through a heated syringe or cylinder at 190 °C with a plunger loaded with 2.16 kg, preferably, a polymer, and a hindered phenolic antioxidant containing an ester linkage dispersed in the polyolefin dispersion composition. The hindered phenolic antioxidant containing an ester linkage can be masterbatched with a polyolefin base polymer, polyolefin stabilizing agent or a coupling agent which is a polymer, melt mixed with the remaining polyolefin composition and then dispersed with aqueous media and a neutralizing agent to form the aqueous dispersion.
Abstract:
The presently disclosed claimed inventive concept(s) relates generally to a rheology modifier composition and an aqueous protective coating composition containing the rheology modifier composition. More particularly, the presently disclosed and/or claimed inventive concept(s) relates to a rheology modifier composition comprising (a) about 50 to about 99% by weight of a water soluble polymer and about 1 to about 50% by weight of a cationic polymer, wherein the cationic polymer is produced by polymerizing a quaternized monomer or by polymerizing a quaternized monomer and a non-quaternized monomer. Additionally, the presently disclosed and/or claimed inventive concept(s) relates generally to the methods of making the rheology modifier composition and the aqueous protective coating composition.
Abstract:
Provided is an aqueous composition comprising dispersed particles that comprise a polyurethane, wherein said polyurethane is a reaction product of a group of reactants (GR1), wherein GR1 comprises one or more aromatic polyisocyanates and, a polyol component, wherein said polyol component comprises (a) 50% to 99% by weight, based on the weight of said polyol component, one or more polyester polyols, (b) 0.1% to 10% by weight, based on the weight of said polyol component, one or more diols having a hydrophilic side chain, and (c) 0.9% to 40% by weight, based on the weight of said polyol component, one or more polyols different from (a) and (b). Also provided is a method of bonding a metal foil to a polymer film using such an aqueous composition.