Abstract:
According to the invention, the fibre direction of a carbon-fibre material of an object which is to be tested is detected using the polarisation direction of light reflected by the object which is to be tested. If unpolarised light, for example, is incident on carbon-fibre, the light reflected by the fibres is polarised in the fibre direction.
Abstract:
The invention relates to a device (1) for detecting laser radiation (45), comprising at least one light inlet (51) and at least one photoelectric transducer (5), which is designed to convert electromagnetic radiation (46) entering through the light inlet (51) into an electrical signal, wherein a modulator (4) is arranged in the beam path between the light inlet (51) and the photoelectric transducer (5), which modulator is designed to modulate laser radiation at a specifiable modulation frequency. The invention further relates to a corresponding method.
Abstract:
The invention relates to an accurate and robust wavefront-division polarimetric analysis device, allowing the quasi-instantaneous measurement of the polarisation states of a luminous object. The wavefront-division polarimetric analysis device of the invention can be used to produce a plurality of light beams, all polarised according to different polarisation states, from a single upstream light beam. The polarised light beams, which do not overlap and which carry information items that are complementary in terms of polarisation, are analysed simultaneously by a plurality of detectors that measure the luminous intensity of each beam. Processing means digitally process the luminous intensity values obtained in order to determine the polarisation state of the upstream light beam. According to the invention, the operations performed by the processing means on the luminous intensity values prevent luminous intensity variations in the divided light beams during the division of the wavefront of the upstream light beam. Therefore the wavefront-division polarimetric analysis device of the invention is robust and its accuracy is not hindered by the experimental conditions. The invention further relates to a wavefront-division polarimetric analysis method for determining the polarisation state of an upstream light beam.
Abstract:
A terahertz ellipsometer, the basic preferred embodiment being a sequential system having a backward wave oscillator (BWO); a first rotatable polarizer that includes a wire grid (WGP1); a rotating polarizer that includes a wire grid (RWGP); a stage (STG) for supporting a sample (S); a rotating retarder (RRET) comprising first (RP), second (RM1), third (RM2) and fourth (RM3) elements; a second rotatable polarizer that includes a wire grid (WGP2); and a Golay cell detector (DET).
Abstract:
A Mueller ellipsometer of the type having a first rotating element on an incident beam side of a sample and a second rotating element on a reflected beam side of the sample and a detector having an integration time, having a controller for selectively and separately adjusting (1) a first angular frequency of the first rotating element and (2) a second angular frequency of the second rotating element.
Abstract:
Ellipsometry systems and ellipsometry data collection methods with improved stabilities are disclosed. In accordance with the present disclosure, multiple predetermined, discrete analyzer angles are utilized to collect ellipsometry data for a single measurement, and data regression is performed based on the ellipsometry data collected at these predetermined, discrete analyzer angles. Utilizing multiple discrete analyzer angles for a single measurement improves the stability of the ellipsometry system.
Abstract:
The invention describes a method to eliminate instrumental offset in measurement of optically active scattering and circular dichroism. The method uses the time-average measurement of the light that is systematically transformed by series of optical devices. The optical devises perform the function of rotating linearly polarized light, interconventing left and right circular polarized light, converting circular polarized light to rotating linear polarized light and converting linear polarized light to alternating left and right circular polarized light.
Abstract:
A method for identifying the orientation of wood fibres (2) comprises the operating steps of generating at least one beam of light (4) polarised in a predetermined first polarisation plane, projecting the beam of light (4) onto a surface of a piece of wood (3) to illuminate a zone of said surface and generate diffuse light without polarisation and reflected light (5) polarised in a second polarisation plane (pX2), detecting the linearly polarised reflected light (5) and identifying the orientation of the illuminated fibres (2) at least indirectly based on the orientation in space of the second polarisation plane (pX2) of the reflected light (5). Also claimed is an apparatus (1) for implementing the method, comprising means for supporting a piece of wood (3), a light source (10) for generating at least one beam of light (4) polarised in a first polarisation plane (pS), a detection device (6) for detecting, in practice, the light coming from a zone of the piece of wood (3) illuminated by the beam of light (4) and for filtering said light based on its polarisation, and a processing device operatively connected at least to the detection device (6) for processing what is detected and identifying the orientation of the wood fibres (2) at the illuminated zone.