Abstract:
An energy distribution network for providing hydrogen fuel to a user comprising; energy source means; hydrogen production means to receive the energy from the energy resource means; hydrogen fuel user means to receive hydrogen from the hydrogen production means; and data collection, storage, control and supply means linked to the energy resource means, the hydrogen production means, and the hydrogen fuel user means to determine, control and supply hydrogen from the hydrogen production means. Preferably, the network comprises one or more water electrolysers and provides for the distribution of hydrogen, for use as a fuel for vehicles, fuel cells, electrical and thermal generators, and the like.
Abstract:
An energy distribution network for providing hydrogen fuel to a user comprising; energy source means; hydrogen production means to receive the energy from the energy resource means; hydrogen fuel user means to receive hydrogen from the hydrogen production means; and data collection, storage, control and supply means linked to the energy resource means, the hydrogen production means, and the hydrogen fuel user means to determine, control and supply hydrogen from the hydrogen production means. Preferably, the network comprises one or more water electrolysers and provides for the distribution of hydrogen, for use as a fuel for vehicles, fuel cells, electrical and thermal generators, and the like.
Abstract:
Compounds are provided comprising at least one neutral, positive, or negative hydrogen species having a greater binding energy than its corresponding ordinary hydrogen species, or greater than any hydrogen species for which the binding energy is unstable or not observed. The compounds also comprise at least one other atom, molecule, or ion other than the increased binding energy hydrogen species. One group of such compounds contains an increased binding energy hydrogen species selected from the group consisting of Hn, Hn- and Hn+, where n is an integer from one to three. Applications of the compounds include their use in batteries, fuel cells, cutting materials, thermionic cathodes, optical filters, fiber optic cables, magnets, etching agents, dopants in semiconductor fabrication, propellants and methods of purifying isotopes.
Abstract:
Le gaz plasmagène est constitué d'un mélange ternaire d'hélium, d'argon et d'hydrogène et contenant au moins 10 % d'hydrogène environ, typiquement de 30 à 70 % d'hélium, de 10 à 50 % d'argon et de 10 à 25 % d'hydrogène, de préférence 20 % (± 5 %) d'hydrogène. Application à la projection plasma de poudre métallique.
Abstract:
Die Erfindung betrifft einen Partialoxidationsreaktor (POX-Reaktor) zum Herstellen eines Rohsynthesegasstroms durch partielle Oxidation eines gasförmigen, flüssigen oder in einer Trägerflüssigkeit oder einem Trägergas dispergierten, festen, partikelförmigen, kohlenstoffhaltigen Einsatzstoffstroms in Gegenwart eines sauerstoffhaltigen Oxidationsmittelstroms und optional eines Moderatorstroms, enthaltend Wasserdampf und/oder Kohlendioxid. Die Erfindung betrifft weiterhin ein Verfahren zum Herstellen eines Rohsynthesegasstroms. Bei dem Partialoxidationsreaktor gemäß der Erfindung wird die Einführung eines zylinderförmigen oder kegelstumpfförmigen Einlassbereiches mit konstantem Durchmesser oder eingangsseitig kleinerem Durchmesser vorgesehen. Der Einlassbereich ist einem zylinderförmigen Hauptreaktorteil vorgeschaltet und stellt einen engpass-ähnlichen Abschnitt dar, da der größte Durchmesser des Einlassbereichs kleiner ist als der Durchmesser des zylinderförmigen Hauptreaktorteils.
Abstract:
[Task] To provide a plant and a method for producing glass and hydrogen which can reduce environmental burden. [Solution] A the plant 1 for producing glass and hydrogen includes: a glass melting furnace 2 that melts a glass raw material with combustion heat of fuel to generate molten glass 12; an exhaust passage 3 which extends from the glass melting furnace and through which exhaust gas generated in the glass melting furnace passes; a boiler 5 that is provided in the exhaust passage and conducts heat exchange between the exhaust gas and water to generate steam; and an electrolyzer 4 that electrolyzes the steam to generate hydrogen and oxygen. The glass melting furnace includes a burner 14 that burns the fuel with a combustion supporting gas having an oxygen concentration of 21 volume% or higher. The burner is connected to the electrolyzer by an oxygen supply pipe 18. The oxygen generated by the electrolyzer is supplied to the burner via the oxygen supply pipe.
Abstract:
A high-temperature steam electrolysis device, a hydrogen production method, and a hydrogen production system include: a high-temperature steam electrolysis cell having a cylindrical shape in which a hydrogen/steam gas diffusion electrode layer is disposed on an inner side of an electrolyte layer and an oxygen gas diffusion electrode layer is disposed on an outer side thereof; a steam flow channel in which high-temperature steam flows on an inner side of the high-temperature steam electrolysis cell; and a helium flow channel in which high-temperature helium flows to heat the high-temperature steam electrolysis cell on an outer side of the high-temperature steam electrolysis cell.
Abstract:
Provided are CO hydratase and a method for producing formate using the same, and more specifically, to CO hydratase which is a novel enzyme which is produced by linking CO dehydrogenase (CODH) and CO 2 reductase and can directly convert CO into formate, and use thereof.