Abstract:
A system for detecting target elements such as bacteria in a host analyte, comprising a substrate with an ordered array of wells having diameters to fit the size of the targets. The substrate may be a periodic macro-PSi array structure (MPSiAS) illuminated with a broadband source. The reflected light spectrum diffracted from the substrate is optically analyzed to provide the effective optical depth of the wells. Fast Fourier Transform analysis may be used for the optical analysis. Entry of target elements into wells is detected by the change in the effective optical depths of the wells. Micro-organisms as large as bacteria and viruses having dimensions comparable with the wavelength of the illumination can thus be detected. Wells with an inner section impenetrable by the target cells enables compensation for environmental changes. The detection may be performed in real time, such that production line bacterial monitoring may be achieved.
Abstract:
[Summary] There is provided a sample-holding carrier that can efficiently irradiate a sample in a well with light and a fluorescence detection device using the same. [Object] A biosensor substrate (1) includes: a base substrate (11) to which excitation light is entered from an under face; a reflective film (16) disposed on the top face side of the base substrate (11) and having electrical conductivity; a plurality of wells (13) disposed on the top face side of the reflective film (16) and having a bottom face portion (13a); and a conductive ring (15) that applies a voltage to the reflective film (16) from the outside. When a sample prepared by applying fluorescence labeling to red blood cells is accommodated in the wells (13), the red blood cells are uniformly arranged on the bottom face portion (13a) by applying a positive voltage to the reflective film (16) because the red blood cells are generally negatively charged. Thus, it is possible to efficiently irradiate individual red blood cells with excitation light.
Abstract:
Light emitting diodes (LEDs) are mounted in an array to an upper structure overlying a lower structure with a plurality of light detectors thereon. Each LED is configured to overlie a separate detector. Each LED emits light at a frequency relevant for measuring optical density of a specimen. LEDs having different frequencies are included within the LED array. A corresponding array of detectors is also provided, mounted to the lower structure. Spacing between adjacent LEDs and between adjacent detectors match a spacing between wells in a microtiter plate. Spacing between the lower structure and the upper structure supporting the LEDs is sufficient for the microtiterplate to fit between. Circuitry sequentially fires individual LEDs and gathers optical density data through the detectors for specimens in the wells of the microtiter plate. The structures are then moved to a next adjacent well position on the microtiter plate and the process repeated.
Abstract:
An improved optical system for use in an instrument for culturing and detecting the presence of microorganisms in human tissue specimens is disclosed. The improved optical detection system is designed to reduce unwanted noise by substantially blocking all light other than light from a sensor positioned on an inside wall of a culture bottle from reaching the photodetector. A control circuit providing a 'lock-in' detection system designed to reduce unwanted noise is also disclosed. The detection system is capable of rapidly and automatically detecting whether a specimen bottle has been inserted into the instrument.
Abstract:
A method is provided for auto-positioning auto-focusing reaction wells for optically imaging purposes within a programmable random access automated apparatus for performing assays wherein the apparatus includes a reaction cartridge (10) having a plurality of reaction wells requiring precision location of the reaction wells (16) within an image allowing accurate transfer of the optical images to a logic system for analyzing the optical information. The optical imaging system (185) provides a generated visual indication of the results of the assays being performed. A micro processor is provided to assist in the operation of the apparatus as well as the imaging processing.
Abstract:
Ein Strahlungsmeßgerät zur automatischen Messung mehrerer matrixartig angeordneter Probengefäße (21), beispielsweise einer Mikrotiter-Platte, weist eine stationäre Blendenplatte (10) auf, unterhalb derer unter dichtender Anpressung die Probengefäße schrittweise vorbeigeführt werden, während auf der Oberseite dieser Blendenplatte die Eintrittsblende eines Detektors (30) oder entsprechender Lichtleiterelemente angeordnet ist. Dabei wird der Detektor sukzessiv jeweils einem Probengefäß zugeordnet, wobei durch die Zwischenschaltung der Blendenplatte insbesondere erreicht wird, daß eine einwandfreie optische Abdichtung der kritischen Nahtstelle zwischen Probengefäßen einerseits und Eintrittsblende andererseits erreicht wird. Bevorzugt weist hierbei die Blendenplatte eine Lochreihe (11) in y-Richtung auf, über die die Eintrittsöffnung des Detektors (30) gleitend verschiebbar ist, wogegen die Probengefäße in x-Richtung vorbeigeführt werden. Bei dieser Ausführungsform dient hierbei die Blendenplatte als Dichtelement, Anschlagelement und Führungselement. Die mechanische Entkoppelung der beiden Bewegungen in x- und y-Richtung ermöglicht einen klaren, mechanisch übersichtlichen Aufbau des Strahlungsmeßgerätes, wobei die Anforderungen an mechanische Maßtoleranzen der betreffenden Bauteile wesentlich reduziert werden können.
Abstract:
A method for agglutination detection using optical imaging of reaction wells containing agglutination objects in a programmable random access automated apparatus for perforing agglutination assays is provided. An image of the agglutination objects in the reaction wells is taken with analyzation of the intensity values and transitions through relative portions of the image and background which provides intensity values suitable for classifying. The method utilizes slope information from a derivative (Fig. 34 A-E, second row) rather than absolute intensities, thus allowing scoring algorithm based on slope total information. The agglutination detection method uses a CCD camera to take an image at each well (Fig. 34 A-E, first row) of a multiple well cartridge, thus providing information suitable for analyzing from the image detection apparatus, the apparatus processes the information to generate a visual indication of the results of the assays being performed. A micro-processor is provided to assist in the operation of the apparatus as well as the image processing data collection and analysis.
Abstract:
Un mécanisme de distribution de liquide (34) comporte une sonde pourvue d'une pointe (70) pour la distribution de liquide et une pompe assurant pour l'ensemble la libération de liquide de la pointe de la sonde (70) en quantités dosées, telles que des gouttes. La sonde de distribution est capable de détecter la formation d'une goutte et la séparation de cette goutte de la sonde (70) grâce à un signal haute fréquence (74, 76) s'appliquant à la pointe de la sonde (70) et par l'intermédiaire d'un élément conducteur relié à un circuit d'amplification et d'analyse (78, 80, 82, 84) situé au-dessous de la sonde et de la chambre de réaction renfermant un fluide de réception. L'élément conducteur détermine également le moment où la sonde est introduite dans le liquide de réception.