Abstract:
An apparatus and a process for generating, accelerating and propagating beams of electrons and plasma at high density, the apparatus comprising: a first dielectric tube, which contains gas; a hollow cathode, which is connected to said first dielectric tube; a second dielectric tube, which is connected to said hollow cathode and protrudes inside, and is connected to, a deposition chamber; an anode, which is arranged around said second dielectric tube, in an intermediate position; means for applying voltage to said cathode and said anode; means for evacuating the gas from the chamber; and means for spontaneous conversion of gas in the first dielectric tube into plasma.
Abstract:
An apparatus and a process for generating, accelerating and propagating beams of electrons and plasma at high density, the apparatus comprising: a first dielectric tube, which contains gas; a hollow cathode, which is connected to said first dielectric tube; a second dielectric tube, which is connected to said hollow cathode and protrudes inside, and is connected to, a deposition chamber; an anode, which is arranged around said second dielectric tube, in an intermediate position; means for applying voltage to said cathode and said anode; means for evacuating the gas from the chamber; and means for spontaneous conversion of gas in the first dielectric tube into plasma.
Abstract:
Die Erfindung betrifft eine Quelle zur Erzeugung von gepulsten Ionen- und Elektronenstrahlen. Mit ihr wird ein in seinem Strahlquerschnitt großflächiger Strom geladener Teilchen erzeugt. Die Vakuum-Bogenplasmaquelle wird durch eine den Gesamtstrom bestimmende Last, die aus der Parallelschaltung eines ohmschen Widerstands mit einem Kondensator besteht, zur sichern Zündung geführt. Diese Last ist an den Innenwiderstand des Pulsspannungsgenerators leistungsangepaßt. Die Dimensionierung der elektrischen Bauteile an den Elektroden unter Berücksichtigung vorgegebener Schranken ermöglicht einen in seinem Strahlquerschnitt homogenen Strom geladener Teilchen, der aus ein und demselben Ladungsteilchen bei gleichen Zündelektroden oder aus einem strukturierten Strom unterschiedlicher Teilchensorten bei unterschiedlichem Zündelektrodenmaterial besteht.
Abstract:
A plasma compensation cathode comprises a casing (1) accommodating coaxially with its outlet hole (2) a hollow holder (3) and a thermal emitter (4) with a central passage (5), a layer (10) of material chemically inert at high temperatures to the materials of the holder and emitter being interposed therebetween. The central passage (5) is blind at the side of admission of gas, and is communicated with the interior of the holder (3) by way of a through passage (8) made in the wall of the thermal emitter (4) so that its axis intersects the axis of passage (5), and longitudinal grooves (9) made in the side surface of the thermal emitter (4) at the location of the inlet holes of the through passage (8). The holder (3) is embraced by heater (6) having a support ring (7) positioned in its midportion and secured in an insulation sleeve (18) separating the heater (6) from the coaxial heat screens (11) interconnected successively to define a sealed cavity (14) wherethrough the interior of the holder (3) communicates with the gas feeding pipe (13) secured in the casing (1) through the support insulator (17). Interposed between mechanical filters (16) and between holder (3) and pipe (13) is a getter (15).
Abstract:
An ion-electron source based on a new type of gas discharge in a hollow anode is presented. A small surface of the exit aperture and a high density of the current enable high brightness of the source; high efficiency and simple construction make possible the low production price and long lifetime of the source.
Abstract:
@ Apparatus and method for producing a pluri-energetic electron beam source. The apparatus includes a housing (10) which functions as an anode, the same having an electron emission window (12) convered by an electron-transparent grid, a cathode body mounted within the housing (10) and electically isolated therefrom, the spacing between the cathode body and grid being sufficient to permit a gas discharge to be maintained between them having a plasma region substantially thinner than the cathode sheath region. The method involves the simultaneous feeding of gas between a cathode body and an anode grid, applying voltages of about 10 kV to 20 kV and regulating the gas feed rate and the voltage to maintain a discharge condition of the character described above.