摘要:
The present invention provides an epoxy resin composition comprising an epoxy resin, a curing agent, a coupling agent, a curing accelerator, and an adhesion promotor, the adhesion promotor comprising an imidazole-based compound having an average particle size of 0.1-5 µm, and a semiconductor device comprising the same. The epoxy resin composition of the present invention has high adhesion to a different kind of material, such as copper, nickel, or silver, and thus, may satisfy a high level of reliability required for a semiconductor for a car, such as MSL or TCT.
摘要:
The present invention relates to: a green glass composition, which can reduce the cooling load of a building and a vehicle by effectively lowering solar heat ray and ultraviolet ray transmittance while ensuring a high visible light transmittance suitable for window glass without using a coloring agent such as Ce, Co and Cr, and also has excellent bubble quality; green glass manufactured therefrom; and a method for manufacturing green glass.
摘要:
Provided are an ultraviolet curable coating composition and an automobile part using the same. In an exemplary embodiment, the coating composition comprises a first urethane (meth)acrylate oligomer having 6 or more functional groups, a second urethane (meth)acrylate oligomer having 3 or more functional groups, a polyester (meth)acrylate oligomer, a hydroxy (meth)acrylate monomer having 3 or more functional groups, a multifunctional (meth)acrylate monomer having 3 or more functional groups, and a photopolymerization initiator, based on the total weight of the coating composition.
摘要:
The present invention relate to a glass composition which can allow for realizing beautiful bluish green colors therein even upon the use of a trace amount of a colorant such as Ti, Co, and Cr, securing high visible light transmittance suitable for window glass, and effectively reducing transmittance of solar heat radiation to help reduce a cooling load in buildings and vehicles.
摘要:
The present invention relates to a warpage-preventing structure for reducing the warpage of the substrate itself, the warpage which results from the difference of the metal patterns of top and bottom surfaces, and/or the warpage which results from the difference in the thermal expansion coefficients of a metal pattern and the substrate, the warpage-preventing structure comprising at least one additional metal layer, wherein the at least one additional metal layer is disposed on at least one surface of the substrate and arranged along an edge of the substrate.