摘要:
This disclosure relates to a process for producing titanium dioxide, comprising: reacting aluminum and an alloy comprising silicon and titanium having a silicon content of at least 5%, based on the weight of the alloy, with chlorine gas at temperatures above 190 °C to form chlorides of silicon, aluminum and titanium; adding titanium tetrachloride to the chlorides of silicon, aluminum and titanium; oxidizing the chlorides of silicon, aluminum and titanium and titanium tetrachloride; and forming titanium dioxide.
摘要:
The invention concerns a gaseous phase process for the production of nano-scale particles (10) in a reactor (11) for producing nano-scale particles in the gaseous phase, in which there is interaction between a reaction flow (14) and an energy flow (15). This process includes the following steps: - a coupling step of a device for producing gaseous chlorides (12) for this reactor (11), a step of production of gaseous chlorides from a precursor base in the form of powders (20), and an injection step of such reactional flow (14) in the reactor (11).
摘要:
The invention relates to salt gel compositions, methods for manufacture and use of the same. In particular, it relates to gel compositions comprising magnesium salts and the cosmetic, therapeutical and industrial uses thereof. Provided is a salt gel composition at least 50% by weight of MgCl2.6H2O (Bischofite) and a gelling agent. Preferred gelling agents are hydroxypropyl derivatives of starch or cellulose.
摘要:
The present invention is directed to the suppression of the formation noxious compounds such as furans. According to the present invention, a venturi device is used to rapidly quench a chlorinator reaction gas. The rapid quench minimizes the resonance time that furan precursors are at conditions conducive to furan formation.
摘要:
This invention relates to a process for recovering calcium chloride from a purge of epichlorhydrine production which is characterised in the subsequent steps pretreatment, pre-concentration and crude crystallisation and pure crystallisation.
摘要:
This invention relates to an improved process for removing trace levels of Group IVb contaminants from a Group IVb metal tetrahalide of and particularly to a process for removing zirconium tetrachloride from titanium tetrachloride. The improvement resides in contacting a titanium tetrachloride feedstock containing trace impurities of zirconium tetrachloride or hafnium tetrachloride with a sufficient amount of titanium hydride to convert any zirconium tetrachloride or hafnium tetrachloride to a lower volatile compound. The resultant mixture is distilled and the titanium tetrachloride separated from the lower volatile zirconium or hafnium compounds.
摘要:
Die Erfindung betrifft ein Verfahren zur Abtrennung von Metallchloriden aus dem bei der Umsetzung von technischem Silizium mit Chlorwasserstoff entstehenden heißen, gasförmigen Reaktionsgemisch (Rohgas), bei dem man das Rohgas in eine im Kreis geführte Suspension von Metallchloriden in Chlorsilanen einleitet, die Temperatur des Rohgases von dessen Einleitungstemperatur bis zur Temperatur des bei der Einleitung entstehenden dreiphasigen Gas/Flüssigkeits/Feststoff-Gemisches zum Teil durch direkte, durch Verdampfung von Chlorsilanen bewirkte Kühlung und zum Teil durch indirekte Kühlung absenkt, einen Teil der entstandenen Suspension von Metallchloriden in flüssigen Chlorsilanen zur Einleitungsstelle des Rohgases zurückführt und aus dem anderen Teil der Suspension die Metallchloride abtrennt. Die Erfindung betrifft weiterhin einen Apparat (oder Kondensator), in dem das Rohgas zur Abscheidung von Metallchloriden und Chlorsilanen in eine Suspension von Metallchloriden in Chlorsilanen eingeleitet wird, sowie eine Filter- und Lösevorrichtung zur Trennung der Suspension von Metallchloriden in Chlorsilanen und zur Weiterbehandlung der abgetrennten Metallchloride.
摘要:
Gaseous metal or metalloid chloride production streams (1) are subjected to the application of thermal energy in the presence of hydrogen or a surface active material (6) for a time and at a temperature sufficient to reduce the organohalogen compounds but not materially adversely affecting the chloride. Suitable surface active materials include coke, activated carbon and alumina. The metal or metalloid may be for instance, aluminium, titanium, magnesium, molbydenum, tungsten, tantalum, beryllium, boron, zirconium, hafnium, niobium, or silicon. Titanium and magnesium, and especially aluminum, are preferred.