摘要:
A method and apparatus are provided for controlling a drive terminal of a power transistor by applying a turn-off voltage to the drive terminal at a turn-off time, measuring a gate current at the drive terminal to detect a predetermined gate current slope, determining a first time increment after the turn-off time when the predetermined gate current slope is detected, determining a second time increment which is proportional to the first time increment and which expires within a Miller plateau for the power transistor, and lowering the gate current at the drive terminal to a predetermined current level upon expiration of the second time increment in order to reduce overvoltages at the power transistor.
摘要:
The present application teaches, among other innovations, methods and circuits for operating a B-TRAN (double-base bidirectional bipolar junction transistor). A base drive circuit is described which provides high-impedance drive to the base contact region on whichever side of the device is operating as the collector (at a given moment). (The B-TRAN, unlike other bipolar junction transistors, is controlled by applied voltage rather than applied current.) The preferred implementation of the drive circuit is operated by control signals to provide diode-mode turn-on and pre-turnoff operation, as well as a hard ON state with a low voltage drop (the “transistor-ON” state). In some but not necessarily all preferred embodiments, an adjustable low voltage for the gate drive circuit is provided by a self-synchronizing rectifier circuit. Also, in some but not necessarily all preferred embodiments, the base drive voltage used to drive the c-base region (on the collector side) is varied while the base current at that terminal is monitored, so that no more base current than necessary is applied. This solves the difficult challenge of optimizing base drive in a B-TRAN.
摘要:
Die Erfindung beschreibt eine Ansteuerschaltung in leistungselektronischen Systemen mit einer Halbbrückenschaltung von zwei Leistungsschaltern, einem ersten sog. TOP-Schalter und einem zweiten sog. BOT- Schalter, die in einer Reihenschaltung angeordnet sind. Die Ansteuerschaltung weist einen TOP- Levelshifter zur Übertragung eines Eingangssignals von einer Ansteuerlogik zu einem TOP- Treiber auf. Hierbei ist der TOP- Levelshifter ausgebildet ist als eine Anordnung eines UP- und eines DOWN-Levelshifterzweiges sowie einer nachgeschalteten Signalauswerteschaltung. In dem zugeordneten Verfahren zur Übertragung dieses Eingangssignals übergibt die Signalauswerteschaltung ein Ausgangssignal an den TOP- Treiber, wenn entweder der UP- oder der DOWN-oder beide Levelshifterzweige ein Signal an den jeweils zugeordneten Eingang der Signalauswerteschaltung abgeben.
摘要:
To realize a driving circuit and a charging pump booster circuit utilizing said [driving circuit] capable of reducing the power consumption and the noise generated during switching. Transistors Q1 and Q2 are controlled based on a control signal input into an input terminal T in , and a charge/discharge current is output to an output terminal T out . The base of a transistor Q5, having almost the same characteristics as those of the transistor Q1, is connected to the base of the transistor Q1 in order to have the transistor Q5 generate a current corresponding to the turning on/off of the transistor Q1, and the current from said transistor Q5 is reflected toward a resistance element R1 by means of a current mirror circuit comprising transistors Q6 and Q7, so that base voltage of the transistor Q2 can be set lower while the transistor Q1 is on in order to hold the transistor Q2 to the OFF status. As a result, leak-through current in the transistors Q1 and Q2 can be reduced and switching noises created by said leak-through current can be restrained.
摘要:
A drive circuit is provided for a magnetic head that has a bifilar winding with a center tap and is used for a magneto-optical disk drive. A magnetizing control signal MAGCH becomes the high level if there is no magnetic reversal during a period of a predetermined number of clocks and becomes the low level if there is a magnetic reversal. If the magnetizing control signal MAGCH is the low level, a high voltage VH is applied to the center tap of the bifilar winding 31 of the magnetic head via the transistor 39. The transistors 40, 41 or the transistors 42, 43 are turned on in accordance with write data signal DATA, *DATA. Therefore, the magnetizing current flows through one of the winding elements 31a and 31b. If the magnetizing control signal MAGCH is the high level, the transistors 46, 41 or the transistors 48, 43 are turned on in accordance with the write data signal DATA, *DATA. Therefore, the magnetizing current flows from the low voltage VL to both the winding elements 31a and 31b.
摘要:
An improved high speed PIN driver integrated circuit and architecture. The architecture of the PIN driver circuit does not rely on transistor clamping during normal operation in active mode, and does not require high reverse base-emitter breakdown voltage in inhibit mode or the active mode, which is in direct opposition to high speed performance at high PIN voltage excursions for CMOS, TTL, ECL level compatibility. In particular, the PIN driver circuit is always an active linear circuit and does always protects the reverse base-emitter voltage of any transistor and does not require wire-OR or clamp transistors. The architecture uses replica biasing to cancel the current of the PIN driver in the inhibit mode, which is a requirement for automatic test equipment where the leakage current produces at the PIN in the inhibit mode is not calibrated out. The replica biasing is implemented using a current mirror circuit, a summing device and a buffer circuit which generates the voltage replica in an active mode of the PIN driver circuit. The replica biasing scheme used in the present invention tracks over temperature and process, and provides for improved high speed circuitry without the need for calibration of leakage currents in the inhibit mode.
摘要:
A magnetic head driving device is disclosed. The device includes an inductor for generating a magnetic field, the inductor having a pair of terminals, first auxiliary coil for storing electromagnetic energy, the first auxiliary coil being connected to one of the terminals of the inductor at a first node, second auxiliary coil for storing an electromagnetic energy, the second auxiliary coil being connected to the other terminal of the inductor at a second node, first main switch connected to the first node, second main switch connected to the second node, and control circuit for receiving a first signal indicating generation of a magnetic field by the inductor and a second signal indicating the direction of a magnetic field generated by the inductor and for outputting the second signal for a predetermined period of time in accordance with the first signal to alternately turn on or off the first main switch and the second main switch.