Abstract:
An electron beam head particularly suitably usable in an electron beam pattern drawing apparatus or otherwise is disclosed. The electron beam head includes an electron beam source (BG) and an electron beam detector (PN) which are provided on a common base member. Secondary electrons (2e) and/or reflected electrons caused when an electron beam (EB) emitted from the electron beam source impinges upon a workpiece or an object to be examined, are detected by the detector. These secondary electrons and/or reflected electrons can be efficiently collected and detected and, on the basis of which, the information concerning the position or otherwise related to the workpiece or the object to be examined can be detected precisely.
Abstract:
Eine Korpuskularsonde (PE) soll auch dann auf einen bestimmten Bereich (MP, MP3) positioniert werden können, wenn die Ist-Lage dieses bestimmten Bereichs (MP, MP3) aufgrund von lokalen Feldem gegenüber seiner Soll-Lage verschoben ercheint und sich daher nicht von vornherein mit hoher Genauigkeit festlegen läßt. Die Korpuskularsonde (PE) wird auf einen vorgegebenen Bereich positioniert. Sodann wird die Korpuskularsonde (PE) in der Umgebung dieses Bereichs so abgelenkt, daß die Korpuskularsonde (PE) auf unterschiedliche Bereiche auftrifft. Aus den Meßsignalen, die beim Auftreffen der Korpuskularsonde (PE) auf die unterschiedlichen Bereiche ausgelöst werden, wird die Lage des bestimmten Bereichs (MP, MP3) ermittelt Die Korpuskularsonde (PE) wird auf diesen Bereich (MP, MP3) positioniert. Eine elektrische Leitung (L, L3) besitzt einen Prüfflecken (MP, MP3), bei dem eine Abmessung größer ist als die Breite der Leitbahn (L,L3).
Abstract:
When an electron beam (4) is used to effect a process at two adjacent surface areas (5a, 5b) of a target such as a semiconductor wafer (1) coated with an electron sensitive resist (3) various alignment errors can occur, for example if the wafer becomes distorted. The provision of a reference marker, for example a square-etched depression (7), at the surface of the target between the areas (5a, 5b) enables the detection of any such distortion. After effecting the process at one of the areas (5a) an electron beam with a rectangular shaped spot is directed, in turn, towards the predetermined positions of two mutually transverse sides (A, B) of the marker (7). in the absence of any alignment error the beam spot overlies the side in question such that it overlaps the marker (7) and the area of the target in the immediate vicinity. The back-scattered electrons can then be detected to give a signal representative of any deviation between the actual position and the predetermined position of the marker so that the electron beam can be correctly aligned when effecting the process at the second of the two areas (5b). For increased accuracy of alignment a plurality of markers (7) may be provided between the areas (5a, 5b).
Abstract:
Systeme de rereperage permettant de determiner l'emplacement et de positionner la surface cible d'un substrat de tranche (275) par rapport a une pluralite de rayons de particules chargees utilisees pour ecrire directement le schema d'un circuit integre simultanement a une pluralite d'emplacements sur le substrat. Le rereperage est execute en explorant avec deux ou plusieurs rayons de particules chargees (100, 150) un nombre correspondant de reperes fiduciels de re-reperage (200, 250) sur le substrat (275). Ces reperes (200, 250) peuvent se composer d'un materiau possedant un nombre atomique eleve ou des caracteristiques topographiques definies au prealable. Des electrons disperses par ces reperes (200, 250) sont detectes et convertis en signaux electriques. La relation temporelle entre les rayons d'exploration (100, 150) et les signaux electriques resultants peut etre utilisee pour determiner l'emplacement du substrat.
Abstract:
zur gegenseitigen Ausrichtung (Registrieren) von Maske und Substrat bei Röntgenstrahl- oder Korpuskularstrahllithographie wird ein Elektronenstrahl (16; Fig. 1) verwendet, der kollateral mit dem Belichtungsstrahl (tonen- oder Röntgenstrahl) verläuft und während des eigentlichen Belichtungsvorgangs unterdrückt wird. Zur Einkopplung des Elektronenstrahls in den Belichtungsstrahlengang wird ein Magnetfeld (7) verwendet; die genaue relative Lage von Maske zu Substrat wird während des Ausrichtvorgangs durch Kippung des Elektronenstrahls ermittelt und die Feinausrichtung während des Belichtens durch entsprechende Kippung des lonenstrahls bzw. Verschiebung des Substrats relativ zum Röntgenstrahl durchgeführt. Die zur Belichtung verwendete Maske (10) besteht aus einer sehr dünnen Siliciumschicht mit einem Musterbereich und einem räumlich davon getrennten Registerbereich. Der Registerbereich besteht aus einer Vielzahl von Durchbrüchen, der Musterbereich aus Sacklöchern.
Abstract:
An exposure method with an electron beam exposure apparatus in which an electron beam is emitted onto a substrate (1) such as a silicon wafer on which an electron-beam sensitive resist is coated, thereby directly forming or writing patterns. A substrate (1) having thereon a number of chips (2) are divided into blocks (3), marks (4) are provided on each of the blocks (3), the positions of the marks (4) are detected and the writing exposure positions of the chips (2) within each block (3) are modified on the basis of the detection results. According to this invention, efficient writing exposure can be made with high accuracy.
Abstract:
According to the invention an electron beam pattern transfer device with an improved alignment means is provided. A first and a second mark M,, M 2 for alignment purposes are formed on the surface of the wafer (26) and the wafer holder (27), respectively. The first mark M, is formed on the wafer by conventional lithographic technique and the second mark M 2 consists of a hole or a heavy metal, such as Ta or Ta 2 O 5 . A third alignment mark M 3 is provided on the photocathode mask having a position corresponding to M 2 on the wafer holder and spaced a known distance L 2 from an imaginary reference position M 4 on the mask. The first step of the alignment process requires the detection of a relative distance L, between the first and second marks M,, M 2 by conventional detecting means, such as an optical measuring means. In the next step, the relative position of the photocathode mask and the wafer holder is adjusted so that the distance between the marks M 2 and M 3 is made substantially equal to the difference between distance L, and the known distance L 2 .
Abstract:
There is disclosed a method of operating an electron beam array lithography apparatus employing an electron beam column having a lenslet array, a fine deflector assembly and a coarse deflector assembly for selectively directing an electron beam to a desired element of the lenslet array and its associated fine deflector element which directs the electron beam to a desired point on a target plane. The method comprises fabricating a lenslet stitching calibration grid having formed thereon a grid of fiducial marking elements, using the lenslet stitching calibration grid to derive fiducial marking signals indicative of the boundaries of the field of view of the individual elements of the lenslet array, and using the fiducial marking signals to control the electron beam column so as to stitch together the individual fields of view of the elements in the lenslet array in order to cover a desired area of a target workpiece to be exposed to the electron beam and which is greater in surface area than the area covered by the field of view of an individual element of the lenslet array.