Abstract:
A composite polyamide reverse osmosis membrane and method of producing same. In a preferred embodiment, the membrane is made by coating a porous polysulfone support with an aqueous solution containing 2 wt % m-phenylenediamine (MPD), and 0.1 wt % di(ethylene glycol) hexyl methyl ether. Next, the excess solution is removed, and the coated support is dipped in 0.1 wt % organic solvent solution of trimesoyl chloride (TMC) in a mixture of alkanes having from 8 to 12 carbon atoms. After draining the TMC solution off, the resulting composite membrane is air dried and then rinsed in a basic aqueous solution. The resultant membrane exhibits a flux of 21.3 gfd and a salt rejection of 98.9% when used at 225 psi for an aqueous solution containing 2000 ppm of NaCl.
Abstract:
To provide a liquid separation device capable of suppressing the lowering of filtration function due to an increase in flow channel resistance of permeated liquid resulting from that a separation membrane falls in a groove of a permeated liquid flow channel material, and breakage of the separation membrane surface accompanied thereby, a permeated liquid flow channel material disposed on the back side of a separation membrane is composed of a sheet-like material that a linear groove and a linear crest are alternately arrayed on one surface or both surfaces, wherein a groove width of the linear groove in the sheet-like material is 10 to 200 µm, and a ratio of the groove width of the linear groove to the pitch of the linear groove is 0.45 or more.
Abstract:
The present invention relates to a system for continuously monitoring the correct operation of fluid separating systems by means of filtering, consisting of one or more sensors (19) of a chemical-physical parameter connectable to the operating conditions of the system or to the quality of the fluid produced by the system, which are inserted into a pipe of the system in which the treated fluid flows and capable of resisting the chemical-physical conditions inside the pipe. In particular, the invention relates to a system for monitoring the operation of water desalinators, based on the measurement of the electric conductivity of water carried out by appropriate sensors.
Abstract:
A process and system for purifying water is disclosed. For example, in one embodiment, the process may be used to remove a divalent salt, such as calcium sulfate, from a water source in order to prevent the divalent salt from precipitating during the process. The water source, for instance, may be fed to an ion separating device, such as an electrodialysis device. In the electrodialysis device, an ion exchange takes place between the divalent salt and another salt, such as a monovalent salt to produce two concentrated salt streams that contain salts having greater solubility in water than the divalent salt. In one embodiment, the two salt streams that are produced may then be combined to precipitate the divalent salt in a controlled manner. During the process, various other components contained within the water feed stream may also be removed from the stream and converted into useful products. In one particular embodiment, the process is configured to receive a byproduct stream from a reverse osmosis process.
Abstract:
Disclosed herein are a composite semipermerable membrane and a method for producing the same. The composite semipermeable membrane comprises a microporous support membrane and a separation functional layer provided on the microporous support membrane, wherein the separation functional layer contains a condensation product produced by condensation of at least one selected from the group consisting of ions of trialkoxysilanes each having an imidazolium group and a conjugated base of a polymer having at least one acidic group. The composite semipermeable membrane achieves excellent selective separation of divalent ions over monovalent ions, and is suitable for use in various water treatment fields such as seawater desalination and drinking water production.
Abstract:
A method of treating water for municipal use comprises treating the feedwater stream on the feed side of a reverse osmosis membrane with a non-oxidizing, bromine-containing biocide in the substantial absence of a reducing agent, such that biofouling of the membrane is reduced or prevented, and measuring the produced water stream on the permeate side for the presence of bromine-containing compounds. Advantages may include preservation of the membrane, production of water that meets applicable regulations for safe drinking, and simplified processing without additional steps to remove the biocide or its degradation products from the produced water.
Abstract:
A reverse osmosis system and method for operating the same includes a pressure tank having a first end and a second end, the pressure tank has a first volume adjacent to the first end and a second volume adjacent to the second end and a third volume between the first volume and the second volume and a fluid passage fluidically coupling the second volume to the first volume. The reverse osmosis system also includes a plurality of membranes disposed within the third volume generating permeate and a permeate manifold receiving permeate from the membranes and fluidically communicating permeate out of the pressure tank. A feed line couples feed fluid into the pressure tank. A first pump pressurizes the feed line. A second pump is disposed within the tank and circulates brine fluid from the second volume through the fluid passage.
Abstract:
The present invention relates to a water pretreatment unit, in particular for salt water, using a heat and/or ion treatment. The invention more particularly relates to a pretreatment unit that comprises a direct contact heat and/or ion exchanger having a continuous or dispersed phase that comprises a fluorinated liquid which is immiscible with water and having a density higher than 1.25.
Abstract:
Die Erfindung betrifft eine Anlage und ein Verfahren zur Aufbereitung einer Flüssigkeit. Eine Pumpe (1) führt einen Feedstrom (2) einer Membraneinheit (3) zu. In der Membraneinheit (3) wird der Feedstrom (2) in einen Permeatstrom (4) und einen Retentatstrom (5) getrennt. Der Istwert der Ausbeute der Anlage ergibt sich als Verhältnis von Permeatstrom (4) zu Feedstrom (2). Der Retentatstrom (5) wird nach Verlassen der Membraneinheit (3) einer Energierückgewinnungseinheit (6) zugeführt. Über Sensoren (10, 11, 12, 14, 15) werden Messwerte erfasst, die an eine Auswerteeinheit (7) weitergeleitet werden. Erfindungsgemäß ermittelt die Auswerteeinheit (7) als Sollwert eine optimale Ausbeute, bei der sich die Anlage mit einem minimalen spezifischen Energiebedarf betreiben lässt. Die Auswerteeinheit (7) errechnet die Abweichung des Istwerts vom Sollwert. In Abhängigkeit dieser Abweichung wird die Ausbeute variiert.
Abstract:
The invention concerns a centrifugal filtering device for filtering a fluid. The device comprises a rotatable inner casing forming an inner space and a rotatable outer casing forming an outer space. The device further comprises a fluid inlet, at least one filter and drive means. The drive means is configured to rotate the inner casing to create a centrifugal pressure. The pressure forces a part of the fluid contained in the inner space through the filter and to a radially outer position of the outer space. The filtered fluid forms a filtrate, the filtrate having a kinetic energy. The outer casing is configured to transport the filtrate from the radially outer position to a radially inner position of the outer space, permitting transfer of the kinetic energy from the filtrate to the outer casing, thereby permitting regaining of mechanical energy.