Abstract:
A fluorescent in situ hybridization method including the steps of (a) obtaining a chromosome spread of a species; (b) preparing a hybridization composite containing a plurality of chromosomal paints each of the plurality of chromosomal paints being labeled with a different fluorophore-or-combination-of-fluorophores, such that an averaged specific activity of highly repetitive sequences in the hybridization composite substantially equals an averaged specific activity of unique sequences in the hybridization composite; (c) denaturing the hybridization composite and subjecting the hybridization composite to conditions for allowing at least a part of the highly repetitive sequences in the hybridization composite to reanneal while at least a part of the unique sequences in the hybridization composite remaining single stranded; (d) contacting under hybridization conditions the hybridization composite with the chromosome spread; (e) washing away excess of the hybridization composite; and (f) analyzing and presenting images of the now hybridized chromosome spread.
Abstract:
A method of in situ analysis of a biological sample comprising the steps of (a) staining the biological sample with N stains of which a first stain is selected from the group consisting of a first immunohistochemical stain, a first histological stain and a first DNA ploidy stain, and a second stain is selected from the group consisting of a second immunohistochemical stain, a second histological stain and a second DNA ploidy stain, with provisions that N is an integer greater than three and further that (i) if the first stain is the first immunohistochemical stain then the second stain is either the second histological stain or the second DNA ploidy stain; (ii) if the first stain is the first histological stain then the second stain is either the second immunohistochemical stain or the second DNA ploidy stain; whereas (iii) if the first stain is the first DNA ploidy stain then the second stain is either the second immunohistochemical stain or the second histological stain; and (b) using a spectral data collection device for collecting spectral data from the biological sample, the spectral data collection device and the N stains are selected so that a spectral component associated with each of the N stains is collectible. Figure (1) shows a block diagram illustrating the main components of an imaging spectrometer.
Abstract:
According to the present invention there is provided a spectral bio-imaging methods which can be used for automatic and/or semiautomatic spectrally resolved morphometric classification of cells, the method comprising the steps of (a) preparing a sample to be spectrally imaged, the sample including at least a portion of at least one cell; (b) viewing the sample through an optical device, the optical device being optically connected to an imaging spectrometer, the optical device and the imagine spectrometer being for obtaining a spectrum of each pixel of the sample; (c) classifying each of the pixels into classification groups according to the pixels spectra; and (d) analyzing the classification groups and thereby classifying the at least one cell into a cell class.
Abstract:
A spectral bio-imaging method for enhancing pathologic, physiologic, metabolic and health related spectral signatures of an eye tissue, the method comprising the steps of (a) providing an optical device for eye inspection being optically connected to a spectral imager; (b) illuminating the eye tissue with light via the iris, viewing the eye tissue through the optical device and spectral imager and obtaining a spectrum of light for each pixel of the eye tissue; and (c) attributing each of the pixels a color or intensity according to its spectral signature, thereby providing an image enhancing the spectral signatures of the eye tissue.
Abstract:
A spectral imaging method for simultaneous detection of multiple fluorophores aimed at detecting and analyzing fluorescent in situ hybridizations employing numerous chromosome paints and/or loci specific probes each labeled with a different fluorophore or a combination of fluorophores for color karyotyping, and at multicolor chromosome banding, wherein each chromosome acquires a specifying banding pattern, which pattern is established using groups of chromosome fragments labeled with various fluorophores or combinations of fluorophores.
Abstract:
A method and hardware for chromosome classification by decorrelation statistical analysis to provide color (spectral) karyotypes and to detect chromosomal aberrations.