摘要:
The present invention discloses and claims substituted 1H-pyrrolo[3,2-b]pyridine-2-carboxamides, 1H-pyrrolo[3,2-c]pyridine-2-carboxamides and 1H-pyrrolo[2,3-c]pyridine-2-carboxamides (compounds of formula (I)) as inhibitors of human casein kinase I Epsilon, and methods of using said compounds of formula (I) for treating central nervous system diseases and disorders including mood disorders and sleep disorders. Pharmaceutical compositions comprising compounds of formula (I) and methods for the preparation of compounds of formula (I) are also disclosed and claimed.
摘要:
The present invention discloses and claims substituted 1H-pyrrolo[3,2-b]pyridine-2-carboxamides, 1H-pyrrolo[3,2-c]pyridine-2-carboxamides and 1H-pyrrolo[2,3-c]pyridine-2-carboxamides (compounds of formula (I)) as inhibitors of human casein kinase I Epsilon, and methods of using said compounds of formula (I) for treating central nervous system diseases and disorders including mood disorders and sleep disorders. Pharmaceutical compositions comprising compounds of formula (I) and methods for the preparation of compounds of formula (I) are also disclosed and claimed.
摘要:
The present invention is directed to methods to identify test compounds that alter circadian rhythms of mammals, and more specifically, directed to methods for determining the ability of a test compound to alter hCKI delta and epsilon phosphorylation of a human Period protein. The present invention is also directed to a method for determining the ability of a test compound to selectively alter phosphorylation, interaction with, or alternatively degradation, of one or more human Period proteins relative to its ability to alter phosphorylation, interaction with, or alternatively degradation, of a different human Period protein.
摘要:
Osteopontin is a marker for oligodendrocyte precursor cells. Osteopontin also modulates oligodendrocyte differentiation and central nervous system myelination. Osteopontin induces migration of oligodendrocyte precursors.
摘要:
The present invention is directed to methods to identify test compounds that alter circadian rhythms of mammals, and more specifically, directed to methods for determining the ability of a test compound to alter hCKI δ and ε phosphorylation of a human Period protein. The present invention is also directed to a method for determining the ability of a test compound to selectively alter phosphorylation, interaction with, or alternatively degradation, of one or more human Period proteins relative to its ability to alter phosphorylation, interaction with, or alternatively degradation, of a different human Period protein.