摘要:
Systems and methods are provided for simultaneously assaying cell adhesion or cell rolling for multiple cell specimens. One embodiment provides a system for assaying adhesion or cell rolling of multiple cell specimens that includes a confocal imaging system containing a parallel plate flow chamber, a pump in fluid communication with the parallel plate flow chamber via a flow chamber inlet line and a cell suspension in fluid communication with the parallel plate flow chamber via a flow chamber outlet line. The system also includes a laser scanning system in electronic communication with the confocal imaging system, and a computer in communication with the confocal imaging system and laser scanning system. In certain embodiments, the laser scanning system emits multiple electromagnetic wavelengths simultaneously it cause multiple fluorescent labels having different excitation wavelength maximums to fluoresce. The system can simultaneously capture real-time fluorescence images from at least seven cell specimens in the parallel plate flow chamber.
摘要:
Disclosed herein are methods of treating, reducing the incidence of, or preventing one or more activities in or of a cancer cell, methods of treating, reducing the incidence of, or preventing migration or metastasis of a cancer cell, methods of treating, reducing the incidence of, or preventing a cancer by reducing tumor associated macrophages (TAMs) or their migration, and methods of treating, reducing the incidence of, or preventing a cancer (including metastatic cancer), for example, with an inhibitor of Motile Sperm Domain containing Protein 2 (MOSPD2). Also disclosed are inhibitors of MOSPD2 (e.g., anti-MOSPD2 antibodies or antigen binding fragments thereof) and pharmaceutical compositions containing MOSPD2 inhibitors. Also disclosed are methods for the prediction, diagnosis, or prognosis of cancer, cancer metastasis, tumor progression, or tumor invasiveness in a subject.
摘要:
The present invention discloses a method for high throughput screening (HTS) for identifying an analyte with a measurable effect on cells. The aforementioned method comprises steps of: (a) providing an array comprising a plurality of cell samples; (b) providing at least one analyte to be tested; (c) contacting said cell samples with said analyte; and (d) detecting a signal indicative of said measurable effect on cells, wherein alteration of said signal over time measured on said cell sample relative to a control sample, is indicative of said measurable effect of said analyte on said cell sample. The current invention further discloses means and methods for identifying an analyte selected from the group consisting of: cannabis extract or a fraction thereof, cannabinoid-type constitute, non cannabinoid-type constitute and any combination thereof. The analyte is indicative of cytotoxic or anti proliferative or anti mitotic or cell growth inhibitory activity in vitro.
摘要:
Apparatus and methods to improve the Boyden chamber used in cellular biological measurements, allowing quantitative optical microscopy of biological cells in situ without using fluorescent probes or optical staining. In the preferred embodiment, a thin porous membrane separating top and bottom reservoirs includes an array of precisely positioned micropores pores manufactured using a laser-based photo-machining (ablation) process. The membrane may be composed of polyethylene terephthalate (PET), polycarbonate, polyimide, polyether ether ketone (PEEK) or other appropriate material. The pores formed in the membrane may have diameters in the range of 1 to 15 microns and spaced apart at a distance ranging from 10 to 200 microns. A plurality of upper and lower reservoirs may be provided to form a multi-well plate. The invention finds application in a wide range of potential biological applications where Boyden chamber geometries are currently used including co-culture studies, tissue remodeling studies, cell polarity determinations, endocrine signaling, cell transport, cell permeability, cell invasion and chemotaxis assays.
摘要:
The present invention relates to methods and assays for identifying agents capable of modulating GPR84 activity in cells, in particular agents that inhibit GPR84-agonist stimulated chemotaxis. Inhibition of GPR84-agonist stimulated chemotaxis is useful in the prevention and/or treatment of inflammatory conditions. In particular, the present invention provides methods and assays for identifying agents for use in the prevention and/or treatment of inflammatory conditions (for example inflammatory bowel diseases (IBD), rheumatoid arthritis, vasculitis, lung diseases (e.g. chronic obstructive pulmonary disease (COPD) and lung interstitial diseases (e.g. idiopathic pulmonary fibrosis (IPF)), neuroinflammatory conditions, infectious diseases, autoimmune diseases and/or diseases involving impairment of immune cell functions.
摘要:
The present invention is directed to creating a highly versatile, high throughput, and convenient platform for interrogating migration phenotypes of GB cells in the context of diverse environmental parameters. Specifically, engineered substrates are employed to mimic the mechanical signals of natural ECM topography, and combine these tools with chemical cues presented in soluble and immobilized forms (PDGF and laminin, respectively). This platform achieves far greater resolution and sensitivity in migration analyses than do commonly used methods. More importantly, it can provide highly informative, patient specific results regarding tumor progression in vivo. Furthermore these capabilities strongly convey the immense clinical, prognostic potential of this simple test.
摘要:
Provided are cortical interneurons and other neuronal cells and in vitro methods for producing such cortical interneurons and other neuronal cells by the directed differentiation of stem cells and neuronal progenitor cells. The present disclosure relates to novel methods of in vitro differentiation of stem cells and neural progenitor cells to produce several type neuronal cells and their precursor cells, including cortical interneurons, hypothalamic neurons and pre-optic cholinergic neurons. The present disclose describes the derivation of these cells via inhibiting SMAD and Wnt signaling pathways and activating SHH signaling pathway. The present disclosure relates to the novel discovery that the timing and duration of SHH activation can be harnessed to direct controlled differentiation of neural progenitor cells into either cortical interneurons, hypothalamic neurons or pre-optic cholinergic neurons. The present disclosure also relates to compositions of cortical interneurons, hypothalamic neurons or pre-optic cholinergic neurons, and their precursors, that are highly enriched and can be used in variety of application. These cells can be used therapeutically to treat neurodegenerative and neuropsychiatric disorders, and can be used for disease modeling and drug screening.
摘要:
[Object] To provide a cell analysis system, a cell analysis program and a cell analysis method suitable for analyzing the movement of ions or molecules across cell membranes. [Solving Means] A cell analysis system according to the present disclosure includes a motion information extracting unit and a motion characteristics calculating unit. The motion information extracting unit extracts motion information arising from a movement of ions or molecules across a cell membrane, out of a cell image obtained from imaging a cell in time series. The motion characteristics calculating unit calculates motion characteristics of the motion information.