Abstract:
The invention relates to a method for the isomerization of 2-pentenenitrile to form trans-3-pentenenitrile in the presence of aluminium oxide as a catalyst. The invention is characterised in that the BET surface of the aluminium oxide is at least 50 m2/g.
Abstract:
A method for the separation of material mixtures of pentenenitrile isomers is disclosed, whereby at least one isomer of the mixture is enriched and the separation of the material mixture of pentenenitrile mixtures is carried out by distillation at reduced pressure.
Abstract:
The invention relates to a method for producing 3-pentenenitrile by means of the hydrocyanation of 1,3-butadiene, whereby 1,3-butadiene is reacted with hydrogen cyanide in the presence of at least one catalyst, and the resulting flow is purified by distillation, the bottom temperature not exceeding 140 °C during the distillation.
Abstract:
The invention relates to a method for producing (S)-2-amino-1-propanol (L-alaninol) from (S)-1-methoxy-2-propylamine via the hydrochloride of (S)-2-amino-1-propanol and subsequent reworking.
Abstract:
The invention relates to phosphinite phosphites I of formula 1, 2, 3, 4, 5 or 6 and mixtures thereof, wherein R1, R2, R4 independently represent an alkyl or alkylene group with 1 to 8 carbon atoms, provided that at least one of the groups R1, R2, R4 is different from H; R5 to R22 independently represent H, an alkyl or alkylene group with 1 to 8 carbon atoms; R3 is H, methyl or ethyl; X is F, Cl or CF3, if n = 1 or 2 and X is H, if n = 0.
Abstract:
The invention relates to a method for producing 3-pentenenitrile, said method being characterised by the following steps: (a) 1,3-butadiene is reacted with hydrogen cyanide on at least one catalyst to obtain a flow (1) containing 3-pentenenitrile, 2-methyl-3-butenenitrile, the at least one catalyst, and 1,3-butadiene; (b) the flow (1) is distilled in a column to obtain a top product flow (2) rich in 1,3-butadiene, and a bottom product flow (3) that is poor in 1,3-butadiene and contains 3-pentenenitrile, the at least one catalyst, and 2-methyl-3-butenenitrile; (c) the flow (3) is distilled in a column to obtain a top product flow (4) containing 1,3-butadiene, a flow (5) in a side-tap of the column, containing 3-pentenenitrile and 2-methyl-3-butenenitrile, and a bottom product flow (6) containing the at least one catalyst; and (d) the flow (5) is distilled to obtain a top product flow (7) containing 2-methyl-3-butenenitrile, and a bottom product flow (8) containing 3-pentenenitrile.