Abstract:
The invention relates to a method for the preparation of double metal cyanide (DMC) catalysts which are used in the production of polyether polyols and the DMC catalysts obtained. The DMC catalysts show enhanced performance in alkoxylation reactions, so that lower concentrations of the DMC catalyst can be used in polyether polyol production.
Abstract:
The present invention relates to a process for the separation of at least one valuable matter containing material from a dispersion comprising said at least one valuable matter containing material and at least one second material. The process according to the present invention comprises at least the steps (A) to (E) and the optional steps (F) to (H) which are described herein.
Abstract:
The invention relates to a method for conditioning double metal catalysts which are used in the production of polyether polyols. The conditioning enhances the performance of the catalyst, so that lower concentrations of the DMC catalyst can be used in polyether polyol production.
Abstract:
The present invention relates to a process for the separation of at least one hydrophobic or hydrophobized material from a dispersion comprising said at least one hydrophobic or hydrophobized material and at least one second material. The process according to the present invention comprises the steps (A) to (D) which are described herein.
Abstract:
The present invention relates to core-shell-particles, wherein the core comprises at least one metal, or a compound thereof, or a mixture of at least one metal or a compound thereof and at least one semimetal or a compound thereof, and the shell comprises at least one silicon comprising polymer, to a process for the preparation of these core-shell-particles, to the use of these core-shell-particles in an agglomeration-deagglomeration process, in particular in chemical, physical or biological test methods or separation processes, decontamination processes, water purification, recycling of electrical/electronic scrap or gravity separation, and to a process for separating at least one first material from a mixture comprising this at least one first material and at least one second material.
Abstract:
The present invention relates to an apparatus for the separation of magnetic constituents from a dispersion comprising these magnetic constituents and nonmagnetic constituents, comprising at least one loop-like canal (5) through which a dispersion flows having at least two inlets (1, 2) and at least two outlets (3, 4), further comprising at least one magnet (6) that is moveable alongside the canal (5), wherein the canal (5) is arranged relative to gravity in a way that nonmagnetic constituents are assisted to go into at least the one first outlet (3) (stream I) by sedimentation and by the current of the dispersion and magnetic constituents are forced into at least one second outlet (4) (stream II) by magnetic force against a current of flushing water. Furthermore, the present invention relates to a process for the separation of magnetic constituents from a dispersion comprising these magnetic constituents and nonmagnetic constituents.
Abstract:
The present invention relates to a process for separating at least one first material from a mixture comprising this at least one first material and at least one second material, which comprises contacting of the mixture comprising at least one first material and at least one second material with at least one magnetic particle, or contacting of the mixture comprising at least one first material and at least one second material with at least one magnetic particle and at least one surface-modifying substance at the same time, contacting of the mixture from step (A) with at least one surface-modifying substance, if this has not been done in step (A), so that the at least one first material, the at least one surface-modifying substance and the at least one magnetic particle become attached to one another, and separation of the addition product by application of a magnetic field.
Abstract:
Method for separating first type particles from a mixture of at least first type particles and second type particles, the method comprising contacting in a dispersion medium first type particles and second type particles with magnet type particles, so that in the dispersion medium first type particles agglomerate to magnet type particles to obtain magnetic agglomerates, separating magnetic agglomerates from second type particles by applying a magnetic field; wherein during step an amount of energy is transferred into a mixture of the dispersion medium, first type particles, second type particles and magnet type particles.