Abstract:
Disclosed herein is a heat dissipating device for a battery pack which comprises a heat pipe and a heat collecting plate comprising a bottom heat collecting plate and an upper heat collecting plate each having a hole therein, wherein two ends of the heat pipe are inserted respectively into the holes in the bottom heat collecting plate and the upper heat collecting plate. A battery using the heat dissipating device is also disclosed. During the operation of the heat dissipating device, since the heat generated by the cells can be colleted in the upper heat collecting plate, then transmitted to the bottom heat collecting plate through the heat pipe, and finally dissipated outwardly by the bottom heat collecting plate, the heat generated by cells can be dissipated rapidly and efficiently.
Abstract:
A power battery module includes a battery accommodating assembly having a plurality of separators, each separator comprising: a separator body having a front portion defining a front accommodating groove and a rear portion; a left cover; a right cover, a battery group, a power connection member, a power connection line and a line snap-fit; in which adjacent separators are detachably connected with each other, and the front accommodating groove of one of the adjacent separators and the rear portion of the separator body of the other of the adjacent separators define a battery chamber, and a snapping hole is formed in at least one of upper and lower walls of the front accommodating groove.
Abstract:
An explosion-proof device for a battery comprises: a vent formed in a battery shell of the battery; a valve core movably disposed in the vent to seal and open the vent; a support mounted on an outer wall of the battery shell; and an elastic element. One end of the elastic element is connected to the support and another end of the elastic element is connected to the valve core so as to normally push the valve core to seal the vent. Each of a power battery and a power battery module includes the explosion-proof device.
Abstract:
The present invention relates to lithium ion secondary batteries that have an enclosure with an electrode core compartment for holding the electrode core and a separate protection circuit compartment for holding the protection circuits, and terminal leads connecting the electrodes in the electrode core with the circuits in the protection circuit. The enclosure is made of non-conducting material such as plastic. The lithium batteries of this invention are light, not only because of the weight of the material of their enclosure, but also because its non-conducting character eliminates the necessity of additional protective features that are commonly necessary for enclosures with metal components.
Abstract:
A heat sink and power battery system, the heat sink includes a heat dissipation plate and a cover plate, the heat dissipation plate includes a bottom plate and a plurality of fins arranged on the bottom plate in a comb-like pattern; the cover plate is fixedly connected to the heat dissipation plate, the fins of the heat dissipation plate are disposed between the bottom plate and the cover plate; and an air duct is formed among the bottom plate, the fins and the cover plate.
Abstract:
Disclosed are a battery terminal (110), a battery cover plate assembly (100), a battery (10) and a battery pack. The battery terminal comprises: outer terminal segment (111) made of a first conductive material; an inner terminal segment (112) made of a second conductive material different from the first conductive material and having an upper end connected to a lower end of the outer terminal segment (111) so as to form a connection portion between the upper end of the inner terminal segment (112) and the lower end of the outer terminal segment (111); and a protection member (113) around the connection portion. With the battery terminal (110) according to an embodiment of the present invention, adjacent batteries can be connected together more reliably.
Abstract:
A type of winding assembly type lithium ion secondary power battery includes: winding assembly type electrode cores wound with positive electrodes, negative electrodes and a separation membrane, electrolyte, and a battery shell. Its characteristics are: the interior of the battery shell carries at least one electrode units formed by electrode holders holding many stacked electrode cores. The terminal leads of the current collector for all positive and negative electrode cores are led from the upper and lower ends of the electrode unit respectively. The positive and negative terminals on cover boards and the outer side of the cover boards are connected to terminal leads of the current collector by built-in fasteners. There is a separation ring between the electrode core body of the battery and the cover boards of the battery. The present invention simplifies the manufacturing technology, increases the energy density of the battery, the mechanical property and safety property of the battery, and has an excellent high discharge property.
Abstract:
The present disclosure provides a battery module and a signal collection unit of the same, and the signal collection unit includes: a circuit board having a circuit thereon; a signal collection terminal including a protection cover electrically connected with the circuit and an electric connection sheet connected with the protection cover, the protection cover being disposed on a surface of the circuit board and a chamber being defined by the protection cover and the circuit board, the electric connection sheet being extended beyond an edge of the circuit board, and a temperature-sensing element disposed in the chamber and on the surface of the circuit board, and insulated from the protection cover.