Abstract:
An electrochemical storage cell having a coiled core is disclosed. The coiled core includes a cathode sheet, an anode sheet, and a separator sheet. An anode connector is connected with the anode sheet at a first end of the coiled core and a cathode connector is connected with the cathode sheet at a second, opposite end of the coiled core. The coiled core has a length Lcore and a width Wcore and each connector has a width Wconnector. The length of the coiled core Lcore, width of the coiled core Wcore, and width of each connector Wconnector have the relationship 0core-Wconnector)/Lcore
Abstract:
A battery module and a battery temperature managing system of a battery temperature managing system includes a battery module; a heat exchanger connected with the battery module via a coolant circulating circuit, and a temperature control device connected with the heat exchanger via a refrigerant circulating circuit, in which a coolant in the coolant circulating circuit and a refrigerant in the refrigerant circulating circuit exchange heat with each other via the heat exchanger, and the battery module is cooled or heated by the coolant when the coolant flows through the battery module.
Abstract:
The present disclosure provides a battery module comprising: a battery pack having at least one single battery and at least one power splicer; a sampling module having a flexible circuit board, wherein at least one voltage sampling terminal and temperature sensor are disposed on the flexible circuit board, the temperature sensor being connected with the power splicer, the voltage sampling terminal being electrically connected with the power splicer; and a shell to enclose the battery pack and the sampling module.
Abstract:
An electrochemical storage cell having a coiled core is disclosed. The coiled core includes a cathode sheet, an anode sheet, and a separator sheet. An anode connector is connected with the anode sheet at a first end of the coiled core and a cathode connector is connected with the cathode sheet at a second, opposite end of the coiled core. The coiled core has a length Lcore and a width Wcore and each connector has a width Wconnector. The length of the coiled core Lcore, width of the coiled core Wcore, and width of each connector Wconnector have the relationship 0core-Wconnector)/Lcore