摘要:
A novel growth factor (BTC-CG) was purified from the conditioned medium of pancreatic beta tumor cells initially derived from transgenic mice (RIP1-Tag2). The purification scheme included BioRex 70 chromatography, phenyl-Sepharose chromatography, TSL-GEL heparin FPLC and C4 reverse phase HPLC. The peptide also stimulated proliferation of bovine smooth muscle cells. It was not inactivated by boiling, by 10 mM dithiothreitol or by exposure to 1 M acetic acid. Biological activity of BTC-GF was recovered from a single band of protein which had a molecular weight of 32,000 on SDS-PAGE. The partial N-terminal amino acid sequence of this protein from BTC-3 and BTC-J10 cells was determined with an ABI 470A protein sequencer to be:
摘要:
A recombinant non-glycosylated mammalian growth factor (BTC-GF) stimulates proliferation of human smooth muscle cells. Especially, the amino acid sequence of the protein deduced from the nucleotide sequence coding for human BTC-GF is as that comprising the amino acids No. 1 to No. 147 of Figure 10 or the amino acids No. 1 to 80 of Figure 10, and the amino acid sequence of the protein deduced from the nucleotide sequence coding for mouse BTC-GF is as that comprising the amino acids No. 1 to No. 146 of Figure 9.
摘要:
A novel growth factor (BTC-CG) was purified from the conditioned medium of pancreatic beta tumor cells initially derived from transgenic mice (RIP1-Tag2). The purification scheme included BioRex 70 chromatography, phenyl-Sepharose chromatography, TSL-GEL heparin FPLC and C4 reverse phase HPLC. The peptide also stimulated proliferation of bovine smooth muscle cells. It was not inactivated by boiling, by 10 mM dithiothreitol or by exposure to 1 M acetic acid. Biological activity of BTC-GF was recovered from a single band of protein which had a molecular weight of 32,000 on SDS-PAGE. The partial N-terminal amino acid sequence of this protein from BTC-3 and BTC-J10 cells was determined with an ABI 470A protein sequencer to be:
摘要:
Methods for stabilizing fibroblast growth factor (FGF) in heat, acid and/or proteolytic environments are provided. Such methods comprise combining or otherwise complexing FGF with a salt of sucrose octasulfate (SOS) and in particular with the aluminum (sucralfate) or potassium salts thereof. The present invention also provides FGF-stable compositions comprising SOS and FGF. Such compositions can be used in the treatment of FGF-responsive diseases including the treatment of wounds and ulcerative conditions of the gastrointestinal tract. The present invention also provides various diagnostic protocols employing SOS as well as diagnostic kits with SOS as a component thereof. Finally, the present invention provides methods of purifying FGF with SOS.