Abstract:
A cold shrink article comprising a shaped,stretched and cured composition comprising (i) a blend of silane-grafted ethylene-α-olefin elastomer and a hydroxyl-terminated polyorganosiloxane, (ii) a vinyl-terminated silicone rubber, and (iii) an ethylene-α-olefin elastomer.
Abstract:
A process of foaming a polyolefin, e.g., polyethylene, composition using as a nucleator a combination of (A) azodicarbonamide, and (B) a mixture of (1) a first component consisting of at least one of citric acid and an alkali metal citrate, and (2) a second component consisting of at least one of an alkali metal citrate, a di-alkali metal hydrogen citrate, an alkali metal dihydrogen citrate and an alkali metal bicarbonate, with the proviso that the mixture is not solely composed of alkali metal citrate.
Abstract:
A cold shrink article made from a composition comprising (A) a silicone rubber; (B) an ethylene/α-olefin interpolymer; (C) a filler; and (D) an α,β-unsaturated carboxylic acid. The composition may optionally include additives selected from the group consisting of plasticizer, peroxide curing agent, antioxidant, process additives, flame retardant and combinations thereof.
Abstract:
Thermally conductive materials comprising a non-polar elastomer, a polar elastomer, and a thermally conductive filler. The polar elastomer and non-polar elastomer are sufficiently immiscible to form a polar elastomer phase and a non-polar elastomer phase. The thermally conductive filler is concentrated in an amount of at least 60 volume percent of the total filler amount in either the non-polar elastomer phase or the polar elastomer phase. The thermally conductive material has a tensile modulus less than 200 MPa. Such thermally conductive materials can be employed in a variety of articles of manufacture as thermal interface materials.
Abstract:
A cold shrink article made from a composition comprising (A) an ethylene/α-olefin interpolymer; (B) a filler; and (C) an α,β-unsaturated carboxylic acid. The composition may optionally include additives selected from the group consisting of plasticizer, peroxide curing agent, antioxidant, process additives, flame retardant and combinations thereof.
Abstract:
Optical cable components fabricated from an extrudable polymeric blend of crystalline polypropylene modified with one or more impact-modifying polymers. The impact-modifying polymers are selected from an olefin multi-block interpolymer, an olefin block composite, and combinations thereof. Optionally, the polymeric blend can further comprise an elastomer other than the impact-modifying polymer. The polymeric blend may also contain one or more additives. The optical fiber cable components can be selected from buffer tubes, core tubes, and slotted core tubes.
Abstract:
Optical cable components fabricated from an extrudable polymeric blend of crystalline polypropylene modified with one or more impact-modifying polymers. The impact-modifying polymers are crosslinked and can be selected from a polyolefin elastomer, an olefin multi-block interpolymer, an olefin block composite, and combinations thereof. Optionally, the polymeric blend can further comprise a compatibilizer. The polymeric blend may also contain one or more additives. The optical fiber cable components can be selected from buffer tubes, core tubes, and slotted core tubes.
Abstract:
The process of foaming a polyolefin, e.g., polyethylene, composition using as a nucleator a combination an azodicarbonamide (ADCA) and a fluororesin at a ADCA: fluororesin weight ratio of 60:40 to 20:80. The synergic effect between these two nucleating agents results in a higher nuclei density and a foamed product with a smaller cell size as compared to processes using and products produced by the use of neat PTFE or neat ADCA alone as the nucleating agent.
Abstract:
Disclosed is an effective thermal grease comprising a hyperbranched olefinic fluid and a thermally conductive filler. Property-modifying additives and fillers may also be included. The hyperbranched olefinic fluid is selected to have an average of at least 1.5 methine carbons per oligomer molecule and at least 40 methine carbons per one thousand total carbons. The thermal grease exhibits a flash point of 180° C. or higher, a pour point of 0° C. or lower, and a kinematic viscosity at 40° C. of no more than 200 cSt (0.0002 m 2/s). The composition may offer improved thermal conductivity, reduced tendency to migrate, and lower cost when compared with many other thermal greases, including silicone-based thermal greases.
Abstract:
A polyolefin composition is foamed by a process in which a nucleator is used, and the nucleator comprises 80% or more of unagglomerated fluororesin particles and/or agglomerates of fluororesin particles in which both the unagglomerated particles and the agglomerates are less than 1 μm in size.