摘要:
Prepare nanofoam by (a) providing an aqueous solution of a flame retardant dissolved in an aqueous solvent, wherein the flame retardant is a solid at 23° C. and 101 kiloPascals pressure when in neat form; (b) providing a fluid polymer composition selected from a solution of polymer dissolved in a water-miscible solvent or a latex of polymer particles in a continuous aqueous phase; (c) mixing the aqueous solution of flame retardant with the fluid polymer composition to form a mixture; (d) removing water and, if present, solvent from the mixture to produce a polymeric composition having less than 74 weight-percent flame retardant based on total polymeric composition weight; (e) compound the polymeric composition with a matrix polymer to form a matrix polymer composition; and (f) foam the matrix polymer composition into nanofoam having a porosity of at least 60 percent.
摘要:
A polymeric nanofoam has a continuous polymer phase containing at least one (meth)acrylic-free acrylonitrile-containing copolymer and at least one (meth)acrylic polymer where the concentration of (meth)acrylic polymer is in a range of 5-90 weight-percent of the total continuous polymer phase while the amount of methacrylic copolymer is 50 weight-percent or less of the total continuous polymer phase; the polymeric foam having a porosity of at least 50%, an absence of nano-sized nucleating additives and at least one of the following: (a) a number average cell size of 500 nanometers or less; and (b) an effective nucleation site density of at least 1×1014 sites per cubic centimeter of prefoamed material. The total weight of copolymerized acrylonitrile is in a range of 3-28 weight-percent based on total continuous polymer phase weight. At least one (meth)acrylic-free acrylonitrile-containing copolymer has a higher glass transition temperature than all of the (meth)acrylic polymers.
摘要:
Prepare nanofoam by (a) providing an aqueous solution of a flame retardant dissolved in an aqueous solvent, wherein the flame retardant is a solid at 23° C. and 101 kiloPascals pressure when in neat form; (b) providing a fluid polymer composition selected from a solution of polymer dissolved in a water-miscible solvent or a latex of polymer particles in a continuous aqueous phase; (c) mixing the aqueous solution of flame retardant with the fluid polymer composition to form a mixture; (d) removing water and, if present, solvent from the mixture to produce a polymeric composition having less than 74 weight-percent flame retardant based on total polymeric composition weight; (e) compound the polymeric composition with a matrix polymer to form a matrix polymer composition; and (f) foam the matrix polymer composition into nanofoam having a porosity of at least 60 percent.
摘要:
Aluminum carboxylate salt having a formula of A1[OCO(CH 2 ) n P(O)( OR 1 )(OR 2 )] 3 where R 1 and R 2 are hydrocarbyl groups that can optionally be joined and n is independently an integer between one and four is useful for forming an article of manufacture comprising a polymer compounded together the aluminum carboxylate salt to form a flame retardant polymer article.
摘要:
Polymer foam bodies are made from phosphorus-containing thermoplastic random copolymers of a dialkyl (meth)acryloyloxyalkyl phosph(on)ate. Foam bodies made from these copolymers exhibit increased limiting oxygen indices and surprisingly have good properties. In certain embodiments, the phosphorus-containing thermoplastic copolymer is blended with one or more other polymers and formed into nanofoams.
摘要:
A polymeric nanofoam has a continuous polymer phase containing at least one (meth)acrylic-free acrylonitrile-containing copolymer and at least one (meth)acrylic polymer where the concentration of (meth)acrylic polymer is in a range of 5-90 weight-percent of the total continuous polymer phase while the amount of methacrylic copolymer is 50 weight-percent or less of the total continuous polymer phase; the polymeric foam having a porosity of at least 50%, an absence of nano-sized nucleating additives and at least one of the following: (a) a number average cell size of 500 nanometers or less; and (b) an effective nucleation site density of at least 1×1014 sites per cubic centimeter of prefoamed material. The total weight of copolymerized acrylonitrile is in a range of 3-28 weight-percent based on total continuous polymer phase weight. At least one (meth)acrylic-free acrylonitrile-containing copolymer has a higher glass transition temperature than all of the (meth)acrylic polymers.