摘要:
A distinctive method of operating an internal combustion engine in a low-temperature combustion mode. An engine combustion chamber is provided with fuel and air charges before combustion conditions are reached. The fuel charge is sufficient to provide a fuel-air equivalence ratio of at least 1.05. The fuel and air are allowed to mix prior to combustion. The fuel is provided to the combustion chamber at least 20 crank angle degrees before top dead center. The fuel and air charges are regulated such that the mixture auto-ignites as a result of the heat and pressure generated by the compression stroke. The amounts are further regulated such that combustion occurs below a temperature at which significant soot production occurs. In one embodiment, early intake valve closing is used to limit the air charge. The method provides a rich low temperature combustion mode operation, which has several applications.
摘要:
The invention relates to a power generation system (10) with a continuously operating fuel reformer (16). Preferably, the fuel reformer (16) is either off, warming up, or operating with an essentially constant fueling rate. Some of the reformed fuel is intermittently used to regenerate a NOx trap (14) that treats the exhaust of an internal combustion engine (11). Any reformed fuel not used for other purposes is supplied to a fuel cell (15). The fuel reformer (16) does not shut down between NOx trap regeneration cycles except when the engine (11) is also shut down. The invention substantially eliminates issues of reformer response time as they relate to NOX trap regeneration.
摘要:
One aspect of the invention relates to a clean power generation system in which an internal combustion engine is operated to produce shaft power and an exhaust stream. The exhaust stream is processed by a fuel cell. Fluctuations in power demand are met, at least in part, by increasing or decreasing power output from the fuel cell and/or power uptake or output from a power storage device. The engine can operate at a relatively constant rate, providing a steady exhaust stream, which facilitates pollution control and fuel cell operation. According to another aspect of the invention, the exhaust of an engine is treated with a fuel cell having an electrolyte that conducts protons. In addition to removing pollutants from the exhaust while generating useful power, the fuel cell can provide a supply of low acidity water. The water can be used in the fuel reformer.
摘要:
One aspect of the invention relates to a clean power generation system in which an internal combustion engine is operated to produce shaft power and an exhaust stream. The exhaust stream is processed by a fuel cell. Fluctuations in power demand are met, at least in part, by increasing or decreasing power output from the fuel cell and/or power uptake or output from a power storage device. The engine can operate at a relatively constant rate, providing a steady exhaust stream, which facilitates pollution control and fuel cell operation. According to another aspect of the invention, the exhaust of an engine is treated with a fuel cell having an electrolyte that conducts protons. In addition to removing pollutants from the exhaust while generating useful power, the fuel cell can provide a supply of low acidity water. The water can be used in the fuel reformer.
摘要:
A solar powered generator (100) has thermoelectric elements adjacent to and below solar cells. Concentrated sunlight is provided. A heat sink (104), which can be variable in temperature or efficiency, is in contact with the cold junction (108) of the thermoelectric device (103). The thermal resistivity is designed in relation to the energy flux, whereby the thermoelectric device (103) develops a gradient of several hundred Kelvin. Preferably the solar cell comprises a high band gap energy semi-conductor. The generator (100) maintains relatively consistent efficiency over a range of cold junction (108) temperatures. The heat sink (104) can be a hot water system. High efficiencies are achieved using nanocomposite thermoelectric materials. Evenly but thinly dispersing the thermoelectric segments in a matrix of highly insulating material reduces the amount of material required for the segments without sacrificing performance. A unitary construction of the solar cell and thermoelectric elements provides further advantages.
摘要:
A distinctive method of operating an internal combustion engine in a low-temperature combustion mode. An engine combustion chamber is provided with fuel and air charges before combustion conditions are reached. The fuel charge is sufficient to provide a fuel-air equivalence ratio of at least 1.05. The fuel and air are allowed to mix prior to combustion. The fuel is provided to the combustion chamber at least 20 crank angle degrees before top dead center. The fuel and air charges are regulated such that the mixture auto-ignites as a result of the heat and pressure generated by the compression stroke. The amounts are further regulated such that combustion occurs below a temperature at which significant soot production occurs. In one embodiment, early intake valve closing is used to limit the air charge. The method provides a rich low temperature combustion mode operation, which has several applications.
摘要:
An exhaust aftertreatment system comprising two or more branches, at least one of which contains a NOx adsorber-catalyst. The branches unite downstream into a trailing conduit that contains an ammonia-SCR catalyst. Ammonia generated by the NOx adsorber-catalyst during regeneration is stored for later use by the SCR catalyst. One advantage of this configuration is a continuous or near continuous presence of oxygen within the trailing exhaust conduit. The continuous presence of improves the efficiency of the SCR catalyst. Another concept is to configure a multi-branch exhaust aftertreatment system without valves, dampers, or other electronically controlled devices adapted to selectively alter the distribution of the exhaust between the branches. The absence of such devices generally results in a comparatively balanced division of exhaust between the branches. One benefit of this configuration is improved reliability as compared to systems that use valves.