Abstract:
A fiber laser device (1) includes an amplification optical fiber (10) having a core (11) doped with an active element, a first FBG (35) reflecting at least a part of light emitted from the active element, and a second FBG (45) reflecting the light reflected off the first FBG (35) at a reflectance lower than the reflectance of the first FBG (35). The wavelength of a fundamental-mode light beam reflected off the first FBG (35) and the wavelength of a fundamental-mode light beam reflected off the second FBG (45) are matched with each other. The wavelengths of higher-mode light beams reflected off the first FBG (35) and the wavelengths of higher-mode light beams reflected off the second FBG are unmatched with each other.
Abstract:
The present invention achieves a fiber laser having a high reflection resistance. A length of an optical fiber MMF is set so that a condition is satisfied at each point on an individual optical path of a fiber laser (FL2), the condition being that a difference between time at which a power of a forward Stokes beam (SF) is at a maximum value and time at which a power of a backward Stokes beam (SB) is at a maximum value is greater than a sum of a half width at half maximum of the power of the forward Stokes beam (SF) and a half width at half maximum of the power of the backward Stokes beam (SB).
Abstract:
An optical power monitor device includes a first optical fiber, including a core and a cladding surrounding the core and being at least one of an incidence-side optical fiber and a launch-side optical fiber connected to each other at a connection point, which is constituted by a curve portion and a linear portion between the curve portion and the connection point, a low refractive index layer that is provided in at least a portion of the linear portion on an outer side of the cladding and has a refractive index lower than a refractive index of the cladding, and a first optical detector that is provided at a position close to at least the curve portion.
Abstract:
An optical fiber propagates a light beam at a predetermined wavelength at least in an LP01 mode and an LP02 mode. A dopant that changes a Young's modulus is doped to at least a part of a waveguide region 12a of a cladding 12 through which a light beam at a predetermined wavelength is propagated and to a region 11b in a core 11 in which the intensity of the light beam in the LP01 mode is greater than the intensity of the light beam in the LP02 mode. At least a part of the Young's modulus in the waveguide region 12a of the cladding 12 is smaller than a Young's modulus in the region 11b in the core 11 in which the intensity of the light beam in the LP01 mode is greater than the intensity of the light beam in the LP02 mode.
Abstract:
A fiber laser system enables an improved reflection resistance property. The fiber laser system includes fiber lasers (2 through 4) each having a laser medium which is an optical fiber made from silica glass. A difference between respective lasing wavelengths of any given two of the fiber lasers is greater than a wavelength equivalent to a half width at half maximum of a peak deriving from a vibration mode of a planar four-membered ring of a Si-O network structure of silica glass.
Abstract:
There is provided a photonic bandgap fiber used in a state in which at least a part of the photonic bandgap fiber is bent at radii of 15 cm or greater and 25 cm or less. A large number of high refractive index portions 57 are disposed in a nineteen-cell core type in three layers, and a V value is 1.5 or greater and 1.63 or less. In the high refractive index portions 57, conditions are defined that a relative refractive index difference is ”% and a lattice constant is A µm so as to remove light in a higher mode at the bent portion as described above.
Abstract:
In a fiber laser system (1) for outputting a laser beam obtained by combining a plurality of laser beams outputted by driving the respective fiber laser unit (2a, 2b, 2c), a control section (7) controls a plurality of current sources (6a, 6b, 6c) so that there are time intervals of a certain time between peaks which appear in a case where respective powers of the laser beams rise.
Abstract:
There are provided an amplification optical fiber, and an optical fiber amplifier and a resonator using the same capable of outputting light of high beam quality even when a higher-order mode that is axially symmetric is excited in addition to LP01 mode. An amplification optical fiber 50 includes: a core 51; a clad 52 coating the core 51; and an outer clad 53 coating the clad 52, wherein the core 51 has a larger refractive index than the clad 52, the core 51 allows light having a predetermined wavelength to propagate in at least LP01 mode and LP02 mode, and in the core 51, active element that stimulates to emit light of the predetermined wavelength is doped at a higher concentration at a position where an intensity of the LP02 mode becomes zero than center of the core 51.
Abstract:
Provided is an optical fiber (1) including a low-refractive-index layer (22) that is disposed between a first cladding (21) and a second cladding (23) and that has a refractive index between those of the first and second claddings (21) and (23). The first cladding (21) has a cladding diameter that is 2.5 or more times the MFD of the fundamental mode at a fluorescence wavelength of an active element in a core (10), and the low-refractive-index layer (21) has a thickness that is equal to or more than an absorption wavelength of the active element.