摘要:
Methods of synthesizing multiple copies of a target nucleic acid sequence autocatalytically under conditions of substantially constant temperature, ionic strength, and pH are provided in which multiple RNA copies of the target sequence autocatalytically generate additional copies. These methods are useful for generating copies of a nucleic acid target sequence for purposes which include assays to quantitate specific nucleic acid sequences in clinical, environmental, forensic and similar samples, cloning and generating probes.
摘要:
Methods of synthesizing multiple copies of a target nucleic acid sequence autocatalytically under conditions of substantially constant temperature, ionic strength, and pH are provided in which multiple RNA copies of the target sequence autocatalytically generate additional copies. These methods are useful for generating copies of a nucleic acid target sequence for purposes which include assays to quantitate specific nucleic acid sequences in clinical, environmental, forensic and similar samples, cloning and generating probes.
摘要:
Methods of synthesizing multiple copies of a target nucleic acid sequence autocatalytically under conditions of substantially constant temperature, ionic strength, and pH are provided in which multiple RNA copies of the target sequence autocatalytically generate additional copies. These methods are useful for generating copies of a nucleic acid target sequence for purposes which include assays to quantitate specific nucleic acid sequences in clinical, environmental, forensic and similar samples, cloning and generating probes.
摘要:
Methods of synthesizing multiple copies of a target nucleic acid sequence autocatalytically under conditions of substantially constant temperature, ionic strength, and pH are provided in which multiple RNA copies of the target sequence autocatalytically generate additional copies. These methods are useful for generating copies of a nucleic acid target sequence for purposes which include assays to quantitate specific nucleic acid sequences in clinical, environmental, forensic and similar samples, cloning and generating probes.