摘要:
A system and method for providing chirped light for an optical network. The system includes a light source configured to provide a light. The system additionally includes a driving signal source configured to provide a first driving signal. The system also includes an amplifier configured to receive the first driving signal, amplify the first driving signal, and provide a second driving signal at a predetermined amplification level, the second driving signal being the amplified first signal. Additionally, the system includes a splitter configured to receive the second driving signal and split the second driving signal into a third driving signal and a fourth driving signal. The system also includes a first attenuator configured to receive the third driving signal, attenuate the third driving signal at a first attenuation level, and provide a fifth driving signal, the fifth driving signal being the third driving signal attenuated by the first attenuator.
摘要:
An optical transceiver comprises a transmitter configured to transmit a first signal, and a receiver coupled to the transmitter and configured to receive a first compensation, wherein the first compensation is based on a pattern-dependent analysis of the first signal, and provide the first compensation to the transmitter, wherein the transmitter is further configured to compensate a second signal based on the first compensation to form a first compensated signal, and transmit the first compensated signal. An optical transmitter comprises a digital signal processor (DSP) comprising a compensator, a digital-to-analog converter (DAC) coupled to the DSP, a radio frequency amplifier (RFA) coupled to the DAC, and an electrical-to-optical converter (EOC) coupled to the RFA. An optical receiver comprises an optical-to-electrical converter (OEC), an analog-to-digital converter (ADC) coupled to the OEC, and a digital signal processor (DSP) coupled to the ADC and comprising a calibrator.
摘要:
Method and system for band blocking in an optical telecommunication network. According to an embodiment, the present invention provides a system for optical network. The system includes an input that is configured to receive an input signal through a first optical input. The system also includes a band splitting module that is coupled to the input. The band splitting module is configured to separate the input signal into a plurality of bands. The plurality of bands includes a first band and a second band. The first band includes a first plurality of wave channels. The first plurality of wave channels is characterized by a first channel spacing. The second band includes a second plurality of wave channels, which is characterized by a second channel spacing.
摘要:
A method comprising applying an In-phase (I) offset to an I component of an orthogonal pseudo-random coded direct current (DC) bias signal, applying a Quadrature-phase (Q) offset to a Q component of the orthogonal pseudo-random coded DC bias signal, applying an I dither signal to an I Mach-Zehnder modulator (MZM), wherein the I dither signal is based on the I component of the orthogonal pseudo-random coded DC bias signal, applying a Q dither signal to a Q MZM, wherein the Q dither signal is based on the Q component of the orthogonal pseudo-random coded DC bias signal, and performing arbitrary waveform generation (AWG) by modulating an analog data signal onto an optical carrier signal via the MZMs, wherein the I offset and the Q offset are selected to mitigate crosstalk between the I MZM and the Q MZM due to a finite extinction ratio.
摘要:
An apparatus and method for performing joint equalization and timing recovery in coherent optical systems. The method includes equalizing signals to generate compensated polarization signals, wherein timing error in a distorted optical signal is calculated based on one of the compensated polarization signals. The method further includes performing resampling polarization signals to correct timing offset in an optical signal based on the calculated timing error. The calculated timing error may also be used to adaptively control one or more operating parameters of an external device.
摘要:
An apparatus comprising an optical input configured to receive an optical carrier, an polarization beam splitter configured to forward a first polarized component of the optical carrier along a first light path, and forward a second polarized component of the optical carrier along a second light path, wherein the first polarized component comprises a first polarization that is perpendicular to a second polarization of the second polarized component upon exiting the optical splitter, and an optical modulator coupled to the first light path and the second light path, the modulator configured to modulate the first polarized component of the optical carrier and the second polarized component of the optical carrier.
摘要:
A system comprises: a polarization state aligner (PSA) comprising: an input port; a first polarization beam splitter (PBS) coupled to the input port; a first phase shifter (PS) coupled to the first PBS; a first polarization rotator (PR) coupled to the first PBS; a first beam splitter (BS) coupled to the first PS and the first PR; a first output port coupled to the first BS; and a second output port coupled to the first BS.
摘要:
An apparatus comprises an uncooled laser; a splitter coupled to the laser; a first wavelength component coupled to the splitter; a local oscillator (LO) port coupled to the first wavelength component; a modulator coupled to the splitter; a second wavelength component coupled to the modulator; and a signal port coupled to the second wavelength component. A method comprises emitting an input light; splitting the input light into a first local oscillator (LO) optical signal and a first unmodulated optical signal; modulating the first unmodulated optical signal using polarization-multiplexed, high-order modulation to produce a first modulated optical signal; transmitting the first LO optical signal to a first duplex fiber; and transmitting the first modulated optical signal to a second duplex fiber.