摘要:
Described is an Evolved Node-B (eNB) to communicate with one or more User Equipment (UEs) on a Long Term Evolution (LTE) network operating in an unlicensed spectrum, the eNB comprising hardware processing circuitry including: an antenna; and a transmitter, coupled to the antenna, the transmitter operable to: inhibit transmission of system information to a UE when the spectrum is unlicensed. The transmitter may also be operable to: refrain from transmission of one or more synchronization signals to a UE when a spectrum is unlicensed. The transmitter may also be operable to transmit the one or more synchronization signals in frequencies away from the centers of the six PRBs of the transmission bandwidth. The transmitter may also be operable to: turn off transmitting in the unlicensed spectrum when the eNB is not servicing any UE; and turn on transmitting in the unlicensed spectrum when a UE is discovered.
摘要:
Generally, this disclosure provides devices, systems and methods for performance monitoring of WLAN data traffic offloading in wireless cellular networks. A wireless local area network (WLAN) access point (AP) may include a performance measurement module to measure the number of User Equipment (UEs) connected to the WLAN AP for data traffic offload and further to measure packet throughput from the UEs to the WLAN AP; a measurement granularity timer to trigger the performance measurement module to perform the measurements; a performance report generation module to generate a WLAN report based on the measurements provided from the performance measurement module; and a performance report timer to trigger the performance report generation module to generate the WLAN report.
摘要:
Technology for an eNodeB operable to maintain timing advance groups (TAGs) is disclosed. The eNodeB can form a timing advance group (TAG) for one or more serving cells. The eNodeB can map each of the one or more serving cells to the TAG using signaling from the eNodeB. The eNodeB can assign a timing advance group identifier (TAG ID) to the one or more serving cells mapped to the TAG.
摘要:
Techniques to manage heterogeneous carrier types are described. User equipment may comprise a processor circuit and a network control component for execution on the processor circuit to locate a synchronization signal (SS) and a cell-specific reference signal (CRS) in a physical resource block (PRB) pair of a long term evolution (LTE) system, the PRB pair having a physical signal pattern for a first carrier type, the physical signal pattern for the first carrier type to have a same number of defined positions between the SS and the CRS within the PRB pair as a physical signal pattern for a second carrier type. Other embodiments are described and claimed.
摘要:
Generally, this disclosure provides devices, systems and methods for performance monitoring of WLAN data traffic offloading in wireless cellular networks. A wireless local area network (WLAN) access point (AP) may include a performance measurement module to measure the number of User Equipment (UEs) connected to the WLAN AP for data traffic offload and further to measure packet throughput from the UEs to the WLAN AP; a measurement granularity timer to trigger the performance measurement module to perform the measurements; a performance report generation module to generate a WLAN report based on the measurements provided from the performance measurement module; and a performance report timer to trigger the performance report generation module to generate the WLAN report.
摘要:
Techniques to manage heterogeneous carrier types are described. User equipment may comprise a processor circuit and a network control component for execution on the processor circuit to locate a synchronization signal (SS) and a cell-specific reference signal (CRS) in a physical resource block (PRB) pair of a long term evolution (LTE) system, the PRB pair having a physical signal pattern for a first carrier type, the physical signal pattern for the first carrier type to have a same number of defined positions between the SS and the CRS within the PRB pair as a physical signal pattern for a second carrier type. Other embodiments are described and claimed.
摘要:
Technology for selecting physical resource blocks (PRB) for cell-specific reference signal (CRS) transmission for a new carrier type (NCT) is disclosed. In an example, device operable in an evolved Node B (eNB) to select physical resource blocks (PRB) for cell-specific reference signal (CRS) transmission for a new carrier type (NCT) can include computer circuitry configured to: Determine a frequency bandwidth for the NCT; and select a CRS pattern of PRBs for a transmission of the CRS in the frequency bandwidth, wherein the frequency bandwidth includes PRBs with CRS and PRBs without CRS.
摘要:
Devices, methods, computer-readable media and systems configurations for multiplexing CSI information and HARQ-ACK information that includes an apparatus comprising a transmit module coupled with both the HARQ-ACK module and the CSI module. In some embodiments, if a scheduling conflict may occur when attempting to encode the HARQ bit stream and the CSI bit stream, the transmit module may perform various resolution processes in the transmitting of the UCI.
摘要:
A user equipment device comprises physical layer circuitry configured to communicate radio frequency (RF) electrical signals directly with one or more separate wireless devices, including to receive an indication of multiple component carriers aggregated into a carrier set that includes at least one scheduling component carrier and at least one scheduled component carrier, and receive scheduling control information for the multiple component carriers of the carrier set using the scheduling component carrier in downlink control information according to a resource radio control signaling protocol.