摘要:
The present invention discloses a MTJ triaxial magnetic field sensor, comprising an X-axis bridge sensor that has a sensing direction along an X-axis, a Y-axis bridge sensor that has a sensing direction along a Y-axis, a Z-axis sensor that has a sensing direction along a Z-axis, and an ASIC chip connected with and matched to the X-axis, Y-axis, and Z-axis sensor chips. The Z-axis sensor includes a substrate and MTJ magnetoresistive elements deposited on the substrate. The Z axis magnetic field sensor is attached to the ASIC chip along an attachment edge, and an angle is formed between the sensor side of the Z axis magnetic field sensor and the adjacent attachment edge. The attachment edge angle is an acute angle or an obtuse angle. The resulting X, Y, and Z axes are mutually orthogonal. The above design provides a highly integrated sensor with high sensitivity, low power consumption, good linearity, wide dynamic range, excellent thermal stability, and low noise.
摘要:
The present invention discloses a design of a single-chip push-pull bridge sensor, composed of magnetoresistive elements, utilizing on-chip permanent magnets. The permanent magnets are oriented to preset magnetization directions of free layers of adjacent sensor bridge arms so that they point to different directions with respect the same sensing direction, enabling push-pull operation. The push-pull bridge sensor of the present invention is integrated on a single chip. Additionally, an on-chip coil is disclosed to reset or calibrate the magnetization directions of the free layers of the magnetoresistive elements.
摘要:
This patent discloses a current sensor comprising a sensor bridge (14), which consists of several magnetic tunnel junction (MTJ) elements (R11, R12, R21, R22), a MTJ temperature compensation resistor (16), and a current lead (20), which are integrated onto the same chip. The current lead (20) is positioned close to the sensor bridge (14), and it is used to carry the test current (19). A permanent magnet (17) is arranged at the periphery of the MTJ temperature compensation resistor (16). The permanent magnet (17) rigidly aligns the magnetization direction (7) of the free layer of the MTJ temperature compensation resistor (16) anti-parallel to the magnetization direction (8) of a pinning layer; so that the MTJ temperature compensation resistor (16) remains in a high resistance state providing a resistance value that changes as a function of temperature. The sensor bridge (14) is connected in series with the MTJ temperature compensation resistor (16) in order to temperature compensate the sensor bridge (14). A magnetic field (21) generated by the test current (19) produces an output voltage at the output of the temperature compensated sensor bridge that is proportional to the test current value. As a result of this temperature compensated structure, the current sensor has the advantages of high sensitivity, wide linear range, low power consumption, and excellent temperature stability.
摘要:
The present invention discloses a triaxial magnetoresistive sensor. It comprises a substrate integrated with a biaxial magnetic field sensor, a Z-axis sensor that has a sensing direction along Z-axis perpendicular to the two axes of the biaxial magnetic field sensor, and an ASIC. The biaxial magnetic field sensor comprises an X-axis bridge sensor and a Y-axis bridge sensor. The Z-axis sensor and the two-axis sensor are electrically interconnected with the ASIC. A single-chip implementation of the triaxial magnetic field sensor comprises a substrate, onto which a triaxial magnetic field sensor and an ASIC are stacked. The triaxial magnetic field sensor comprises an X-axis bridge sensor, a Y-axis bridge sensor, and a Z-axis bridge sensor. The above design provides a highly integrated sensor with high sensitivity, low power consumption, good linearity, wide dynamic range, excellent thermal stability, and low magnetic noise.