摘要:
In a capacitively coupled discharge lamp the electrode (4, 5, 6) comprises a dielectric material (6) that during operation is in contact with the discharge. The impedance of the dielectric material is small and its electron affinity is negative. In this way it is realized that the discharge lamp can be operated efficiently at low frequencies (less than 500 KHz).
摘要:
An apparatus comprises: a database (30) storing medical data including image medical data and non-image medical data for a plurality of patients; a digital processor (40) configured to (i) generate a features vector (56) comprising features indicative of a patient derived from patient medical data stored in the database including both patient image medical data and patient non-image medical data and (ii) perform multivariate analysis (64) on a features vector generated for a patient of interest to determine a proposed diagnosis for the patient of interest; and a user interface (42) configured to output a human perceptible representation of the proposed diagnosis for the patient of interest.
摘要:
The present invention relates to a method of manufacturing a window transparent for electrons of an electron beam (E), in particular of an X-ray source. In order to enable a less costly and elaborate manufacture of such a window and in order to prevent unwanted sharp edges in a window area which may damage the window foil (2), a method is proposed comprising the steps of: -providing on a surface (11) of a carrier element (1) to which a window foil (2) shall be a fixed a receiving area (13, 16) for receiving a soldering material (3) used for fixing said window foil (2) to said carrier element (1), said carrier element (1) comprising a through hole (12) for the transmission of said electrons (E), -covering said surface (11) having said receiving area (13, 16) with a soldering material (3) such that substantially only said receiving area (13, 16) is filled with soldering material (3), -placing said window foil (2) on top of said surface (1) and -heating said soldering material (3) for fixing said window foil (2) to said surface (11).
摘要:
The present invention refers to a process for laser desorption ionization mass spectrometry using a polymer of aniline or an aniline derivative, or phenyl acrylate or a phenyl acrylate derivative. The polymer is a UV absorbing polymer onto which polymer a sample probe can be deposited. With the use of a UV laser beam, the sample molecules can be desorbed and ionized. The addition of a UV absorbing matrix material may not be necessary any more.
摘要:
The present invention relates to the use of composites or compositions of diamond/non-diamond material, e.g. diamond/non-diamond carbon material for chemical or biological analysis. The invention further relates to the use of this material in separation adherence and detection of chemical of biological samples. Applications of either structurized substrates or mixed phase particles of this material include but are not limited to processes which involve desorption-ionization of a sample, more specifically mass spectroscopy.
摘要:
The present invention relates to the use of carbon nanotubes as a substrate for chemical or biological analysis. The invention further relates to the use of this material in separation adherence and detection of chemical of biological samples. Carbon nanotubes are envisaged as surface material of a fixed substrate or in suspension and applications include but are not limited to processes which involve desorption-ionization of a sample, more specifically mass spectroscopy.
摘要:
The present invention relates to a method of manufacturing a window transparent for electrons of an electron beam (E), in particular of an X-ray source. In order to enable a less costly and elaborate manufacture of such a window and in order to prevent unwanted sharp edges in a window area which may damage the window foil (2), a method is proposed comprising the steps of: -providing on a surface (11) of a carrier element (1) to which a window foil (2) shall be a fixed a receiving area (13, 16) for receiving a soldering material (3) used for fixing said window foil (2) to said carrier element (1), said carrier element (1) comprising a through hole (12) for the transmission of said electrons (E), -covering said surface (11) having said receiving area (13, 16) with a soldering material (3) such that substantially only said receiving area (13, 16) is filled with soldering material (3), -placing said window foil (2) on top of said surface (1) and -heating said soldering material (3) for fixing said window foil (2) to said surface (11).
摘要:
A patient presses a finger concurrently against a needle (14) of a collection container (12) and a fingerprint surface (22, 52). In one embodiment, the patient's fingerprint is read electronically by a scanner (24) and correlated with a container serial number (16). In another embodiment, the patient's fingerprint is embossed in a foil layer (52). An analyzer assembly (40, 40' 40'') analyzes the biological sample and reads either the container serial number or scans the fingerprint carrying layer (52) and sends the test results and either the fingerprint or container identification to a patient memory (30). Using the fingerprint information, a processor (32) correlates the test results with a record (60) of a corresponding patient. Alternately or additionally, the analyzer assembly includes a DNA analyzer (70) which measures preselected DNA characteristics (76) of the sample. The processor (32) compares the measured DNA subset characteristics with DNA subset characteristics (66) in the patient records to correlate or confirm the correlation of the analysis results with the proper patient.
摘要:
The invention provides nanostructures, being arrays of nanosized filamentary material such as carbon nanotubes (CNTs) and other nanomaterials and especially to such materials connected to a substrate such as at least one top electrode and one bottom electrode, and to a method for manufacturing such nanostructures. A device according to the present invention comprises a first and a second layer (11, 13) separated from each other; and nanosized filamentary material (10) grown between said first and said second layer (11, 13). The shape and size of the nanosized filamentary material is determined by the shape and size of the second layer. A corresponding method for growing the nanosized filamentary material is also provided.
摘要:
In a capacitively coupled discharge lamp the electrode (4, 5, 6) comprises a dielectric material (6) that during operation is in contact with the discharge. The impedance of the dielectric material is small and its electron affinity is negative. In this way it is realized that the discharge lamp can be operated efficiently at low frequencies (less than 500 KHz).