Abstract:
Disclosed is a method of fabricating a flexible device, which includes surface-treating one or both sides of a carrier plate (1) so that regions (2,2',2'') with different surface-treatments are formed on the same side of the carrier plate, forming a glass-filler reinforced plastic substrate film (3) on the surface-treated carrier plate, forming thin film patterns (4) on the glass-filler reinforced plastic substrate film, and separating the glass-filler reinforced plastic substrate film having the thin film patterns formed thereon from the carrier plate, and in which the surface-treating of the carrier plate enables the glass-filler reinforced plastic substrate film to be easily separated from the carrier plate without an additional process such as using a solvent or a laser release technique.
Abstract:
Provided is a transparent siloxane resin composition for optical applications, including: (1) a vinyl-oligosiloxane hybrid; (2) an organohydrosilicon compound having two or more silicon-bonded hydrogen atoms; and (3) a metal catalyst. A vinyl-oligosiloxane hybrid having an inorganic network structure and a high degree of condensation is prepared via a non-hydrolytic condensation reaction of an organosilanediol and an organoalkoxysilane having a vinyl group. When the organoalkoxysilane having a vinyl group is partly substituted with a metal alkoxide, a transparent siloxane resin for optical applications with high degree of condensation and refractive index can be prepared. The resulting transparent siloxane resin for optical applications exhibits excellent light transmittance, light resistance and heat resistance, has refractive index and hardness suitable for optical applications, and experiences little contraction during processing. Hence, it makes an ideal resin for optical applications, including optical devices, displays, LEDs, or the like.
Abstract:
Disclosed is a resin composition for LED encapsulation including an organic oligosiloxane hybrid prepared by non-hydrolytic condensation of organoalkoxysilane. More particularly, the resin composition for LED encapsulation includes an organic oligosiloxane hybrid prepared by non-hydrolytic condensation of organoalkoxysilane with organosilanediol or non-hydrolytic condensation of a mixture containing organoalkoxysilane and metal alkoxide with organosilanediol. The prepared organic oligosilane hybrid has an inorganic network structure with a high degree of condensation and contains at least one organic group or organic functional group. In addition, an encapsulated LED fabricated using the above resin composition for LED encapsulation is provided.
Abstract:
Provided is a transparent siloxane resin composition for optical applications, including: (1) a vinyl-oligosiloxane hybrid; (2) an organohydrosilicon compound having two or more silicon-bonded hydrogen atoms; and (3) a metal catalyst. A vinyl-oligosiloxane hybrid having an inorganic network structure and a high degree of condensation is prepared via a non-hydrolytic condensation reaction of an organosilanediol and an organoalkoxysilane having a vinyl group. When the organoalkoxysilane having a vinyl group is partly substituted with a metal alkoxide, a transparent siloxane resin for optical applications with high degree of condensation and refractive index can be prepared. The resulting transparent siloxane resin for optical applications exhibits excellent light transmittance, light resistance and heat resistance, has refractive index and hardness suitable for optical applications, and experiences little contraction during processing. Hence, it makes an ideal resin for optical applications, including optical devices, displays, LEDs, or the like.
Abstract:
Provided is a non-hydrolytic transparent composite composition having excellent transparency and heat resistance, and a low thermal expansion coefficient. Particularly, the transparent composite composition includes a glass filler dispersed in a crosslinked transparent resin produced by a non-hydrolytic reaction. The non-hydrolytic transparent siloxane resin is a resin having Si-O (siloxane) bonds, a resin having at least one kind of heterometal bonds, including Si-O bonds, or the resin further containing other ingredients. When the transparent siloxane resin produced by a non-hydrolytic reaction forms a composite in combination with the glass filler, the composite realizes high transparency and heat resistance, as well as a low thermal expansion coefficient. Therefore, the transparent composite composition is useful as a substrate for thin film transistor (TFT) devices, display devices and optical devices.