摘要:
A full-body charger (118) for charging one or more battery-powered devices wherein such devices (100) are configured for implanting beneath a patient's skin for the purpose of tissue, e.g., nerve or muscle, stimulation and/or parameter monitoring and/or data communication. Devices in accordance with the invention include a support structure, typically chair-shaped (160) or bed-shaped (166), capable of supporting a patient's body while providing a magnetic field to one or more of the implanted devices using one or more coils mounted within for providing power to the implanted devices. Consequently, in a preferred embodiment, a single, generally sequential, charging cycle can charge all of the implanted devices and thus minimize the charge time requirements for a patient and accordingly improve the patient's life style.
摘要:
This invention is a device configured for implanting beneath a patient's skin for the purpose of tissue, e.g., nerves or muscle, stimulation, and/or parameter monitoring, and/or data communication. Devices in accordance with the invention are comprised of a sealed housing (110), typically having an axial dimension of less than 60 mm and a lateral dimension of less than 6 mm, containing a power source (104) for powering electronic circuitry within, including a controller (130), an address storage means (132), a data signal receiver, and an input/output transducer.
摘要:
The electrode array is a device for making multiple electrical contacts with cellular tissue or organs. The electrode array includes a base (1), a two dimensional array of conducting protuberances (2) arising from the base and serving as electrodes, and conductors (3) embedded onto the base and connected to such protuberances for transmitting electrical signals to and/or from the protuberances. The protuberances may also include an insulating layer (15) which covers either the entire protuberance or which leaves the tips exposed for making focused electrical contact. Electrode arrays may be used singly or in combination with a second electrode array so as to form a sandwich around a target tissue. The sandwich electrode array (16, 17) may employ indexing cones for aligning the opposing electrode arrays and for limiting their vertical proximity. The conductors of the electrode array may be electronically connected or coupled to processing circuitry which amplifies and analyzes the signal received from the tissue and/or which generates signals which are sent to the target tissue and possibly coordinates the generated signals with signals which originate with the tissue.
摘要:
A communication protocol that is configured to extend the battery life of devices that monitor and/or affect body parameters and is particularly useful in a system comprised of a system control unit (SCU) and one or more implanted devices. Each such implanted device is configured to be monitored and/or controlled by the SCU via a wireless communication channel. The time between battery rechargings is determined by the battery capacity and the device's power consumption. Accordingly, the present invention reduces their average power consumption by reducing the usage duty cycle of their power consuming transmit and receive modes used to communicate with the SCU. By dedicating addressable time slots to each of the implantable devices in the system and limiting their use of receive and transmit modes to time periods proximate to these time slots, the average power consumption is accordingly reduced.
摘要:
The invention discloses methods of making electrical connections in living tissue between an electrically conductive wire and an implantable miniature device. The device may either stimulate muscles or nerves in the body or detect signals and transmit these signals outside the body or transmit the signals for use at another location within the body. The device is comprised of an electrically insulating or electrically conductive case with at least one electrode for transmitting electrical signals. The electrodes and the wire-electrode connections are protected from the aggressive environment within the body to avoid corrosion of the electrode and to avoid damage to the living tissue surrounding the device.
摘要:
The invention is a method of removing a miniature implantable electronic device (22) by means of an integral eyelet (30) or circumferential ring to facilitate removal of the implanted device without surgery. The string (32), if to radio-opaque, provides a method of locating the miniature implantable device without surgery and attachment of one end of the string to a radio-opaque marker provides a method of locating the end of the string to facilitate non-surgical removal of the miniature implantable device from living tissue. Alternatively, the miniature implantable device may be placed in a silk tube prior to being implanted in the living tissue, to facilitate removal from the tissue. Additionally, the eyelet increases the life of the miniature implantable device, if it is made of a metal, such as platinum or iridium, which has a low metal-to-electrolyte voltage drop by virtue of improved electrical coupling to a saline solution.