摘要:
The present disclosure provides a device and a cell culture system comprising a substrate that generates significant chemical ion signatures adapted for cultυring stem cells. This disclosure further provides unique surface properties, such as surface wettability, along with defined polymer microspot environments in an array, for effectively supporting the propagation and differentiation of human pluripotent stem cells in vitro. Methods of cυlturing, maintenance, differentiating stem cells as well as reprogramming somatic cells into stem cells using the device and the cell culture system with the suitable substrates, along with suitable culture media, are also provided.
摘要:
Compositions and methods for modified dendrimer nanoparticle (“MDNP”) delivery of therapeutic, prophylactic and/or diagnostic agent such as large repRNA molecules to the cells of a subject have been developed. MDNPs efficiently drive proliferation of antigen-specific T cells against intracellular antigen, and potentiate antigen-specific antibody responses. MDNPs can be multiplexed to deliver two or more different repRNAs to modify expression kinetics of encoded antigens and to simultaneous deliver repRNAs and mRNAs including the same UTR elements that promote expression of encoded antigens.
摘要:
Products, such as devices, prostheses, and materials, whose surfaces have been modified in order to impart beneficial properties to these products are disclosed. The surface-modified products have improved biocompatibility compared to a corresponding product that lacks the modification. Following implantation in a subject, the surface-modified products induce a lower foreign-body response, compared to a corresponding unmodified product.
摘要:
Covalently modified alginate polymers, possessing enhanced biocompatibility and tailored physiochemical properties, as well as methods of making and use thereof, are disclosed herein. The covalently modified alginates are useful as a matrix for the encapsulation and transplantation of cells. Also disclosed are high throughput methods for the characterizing the biocompatibility and physiochemical properties of modified alginate polymers.
摘要:
Poly(β-amino esters) prepared from the conjugate addition of bis(secondary amines) or primary amines to a bis(acrylate ester) are described. Methods of preparing these polymers from commercially available starting materials are also provided. These tertiary amine-containing polymers are preferably biodegradable and biocompatible and may be used in a variety of drug delivery systems. Given the poly(amine) nature of these polymers, they are particularly suited for the delivery of polynucleotides. Nanoparticles containing polymer/polynucleotide complexes have been prepared. The inventive polymers may also be used to encapsulate other agents to be delivered. They are particularly useful in delivering labile agents given their ability to buffer the pH of their surroundings. A system for preparing and screening polymers in parallel using semi-automated robotic fluid delivery systems is also provided.
摘要:
Injectable insulin loaded microgels that are capable of modifying the amount of insulin released based on the patient's tissue glucose levels, methods for making and using these compositions have been developed. The microgels contain insulin, glucose oxidase entrapped in or bound to the microgels, and an agent that reduces hydrogen peroxide, entrapped in or bound to the microgels, wherein the polymeric microgel expands when pH decreases from physiological pH and shrinks when pH increases towards physiological pH, thereby releasing insulin at a rate corresponding to the glucose concentration. In one embodiment, the glucose oxidase and/or the agent reducing hydrogen peroxide are encapsulated in nanogels, then encapsulated within the microgel.
摘要:
Biomedical devices for implantation with decreased pericapsular fibrotic overgrowth are disclosed. The device includes biocompatible materials and has specific characteristics that allow the device to elicit less of a fibrotic reaction after implantation than the same device lacking one or more of these characteristic that are present on the device. Biocompatible hydrogel capsules encapsulating mammalian cells having a diameter of greater than 1 mm, and optionally a cell free core, are disclosed which have reduced fibrotic overgrowth after implantation in a subject. Methods of treating a disease in a subject are also disclosed that involve administering a therapeutically effective amount of the disclosed encapsulated cells to the subject.