摘要:
The disclosure concerns an actuator module (10) for actuating a load (14). The actuator module (10) comprises a deformable frame (1) and an actuator (2) connected to the deformable frame (1). A time-varying force distribution (F) couples to an excited state (V0) of an eigenmode (V) of the deformable frame (1). The force distribution (F), as well as a stiffness distribution (K) and/or mass distribution (M) of the deformable frame 1 are adapted such that static nodal points (11s) of the deformable frame 1 are coincided with mode nodal points (11m). The locations where the nodal points coincide can be used to connect the actuator module (10) to a base frame to reduce transfer of vibrations to the base frame and back which may otherwise undesirably influence the transfer function from actuator to load. The disclosure further concerns a method for designing and/or manufacturing the actuator module.
摘要:
A vibration sensor (9) comprises a reference mass (10), a resilient element (11) supporting the reference mass (10), and a base (13) supporting the resilient element (11), and further comprises a displacement sensor (12) for determining the distance between the reference mass (10) and the base (13). In accordance with the invention the vibration sensor comprises an actuator (14) that is situated between the resilient element (11) and the base (13), a second displacement sensor (15), and a controller (16) for providing an output signal to the actuator (14)
摘要:
According to an aspect of the invention, there is provided a mirror structure for adaptive optics devices, characterized in that it comprises: an elastically deformable layer in response to an applied force, said deformable layer comprising a central portion reflective to said an incident light beam (F); a support substrate positioned spaced with respect to said deformable layer; a spacer element connected to said elastically deformable layer and support substrate and positioned there between, said spacer element being arranged so that the separation distance between said first and second inner surface is in the range between 2 and 100 micron; an inner chamber at least partially defined by said first and substrate and by said spacer element, said inner chamber containing a pressurized gas (G); an actuator system capable of causing a deformation of said central portion counteracting the pressure of said pressurized gas; wherein, in use, said central portion is deformed according to profiles such as to control said light beam. Advantages may include thermal robustness and improved dimensional scaling properties.
摘要:
A fluid density measuring device uses a pipe with a pipe wall that has an inner wall surface with a non-circular cross-section at least in an axial segment of the pipe. Preferably, the inner wall surface comprises one or more protrusions extending inward into the pipe and along the axial direction of the pipe. An ultrasound transducer located on the pipe wall is used to generate local motion of the pipe wall with a circumferential direction of motion. Preferably, the ultrasound transducer is located between successive protrusions. An ultrasound receiver located on the pipe wall receives an ultrasound torsion wave generated by said local motion after the torsion wave has traveled through the axial section wherein the inner wall surface has a non-circular cross-section. The fluid density is determined from the propagation speed of the torsion wave.
摘要:
The invention relates to an instrument, preferably for minimally invasive surgery, comprising a frame (27) having a proximal end and a distal end, a first working element (4) having a first origin located at the distal end and a second working element (5) having a second origin and being arranged at the distal end cooperating with the first working element, a force sensor for measuring a force exerted on at least one of the said the first and the second working elements, wherein the distal end of the frame comprises an opening (23) between the first origin and the second origin, the force sensor being arranged on the frame in a vicinity of the opening.
摘要:
The invention is directed at a method of advancing a probe tip of a probe of a scanning microscopy device towards a sample surface. The scanning microscopy device comprises the probe for scanning the sample surface for mapping nanostructures on the sample surface. The probe tip of the probe is mounted on a cantilever arranged for bringing the probe tip in contact with the sample surface. The method comprises controlling, by a controller, an actuator system of the device for moving the probe to the sample surface, and receiving, by the controller, a sensor signal indicative of at least one operational parameter of the probe for providing feedback to perform said controlling. The method further comprises maintaining, during said controlling, an electric field between the sample surface and the probe tip, and evaluating the sensor signal indicative of the at least one operational parameter for determining an influence on said probe by said electric field, for determining proximity of the sample surface relative to the probe tip. The invention is further directed at a scanning microscopy device comprising a probe for scanning a sample surface for mapping nanostructures thereon.