摘要:
Spatial spreading is performed in a multi-antenna system to randomize an “effective” channel observed by a receiving entity for each transmitted data symbol block. For a MIMO system, at a transmitting entity, data is processed (e.g., encoded, interleaved, and modulated) to obtain ND data symbol blocks to be transmitted in NM transmission spans, where ND≧1 and NM>1. The ND blocks are partitioned into NM data symbol subblocks, one subblock for each transmission span. A steering matrix is selected (e.g., in a deterministic or pseudo-random manner from among a set of L steering matrices, where L>1) for each subblock. Each data symbol subblock is spatially processed with the steering matrix selected for that subblock to obtain transmit symbols, which are further processed and transmitted via NT transmit antennas in one transmission span. The ND data symbol blocks are thus spatially processed with NM steering matrices and observe an ensemble of channels.
摘要:
Disclosed herein are methods and apparatus for enhancing the estimation of channel response in a wireless communication system. An apparatus (and associated method) for optimizing channel estimation in a communication system includes a receiving antenna; a receiver adapted to receive a signal from the receiving antenna; an initial channel estimator module adapted to select a selected channel from among one or more channels in the communication system and to determine, for the selected channel, an initial channel estimate based upon the received signal; a transformation module adapted to transform the initial channel estimate into an initial impulse response estimate comprising a sequence of samples; a filtering module adapted to select a sub-sequence of samples from the sequence of samples and generate a truncated initial impulse response estimate by setting to zero the samples in the initial impulse response estimate that are not in the selected sub-sequence of samples; and a maximum likelihood channel estimating module adapted to compute a time domain weighted impulse response estimate using the truncated time domain impulse response estimate for the selected channel and to compute a maximum likelihood channel estimate for the selected channel by transforming the time domain weighted impulse response estimate into the frequency domain.
摘要:
A transmitting entity performs spatial processing on data symbols for each subband with an eigenmode matrix, a steering matrix, or an identity matrix to obtain spatially processed symbols for the subband. The data symbols may be sent on orthogonal spatial channels with the eigenmode matrix, on different spatial channels with the steering matrix, or from different transmit antennas with the identity matrix. The transmitting entity further performs beamforming on the spatially processed symbols, in the frequency domain or time domain, prior to transmission from the multiple transmit antennas. A receiving entity performs the complementary processing to recover the data symbols sent by the transmitting entity. The receiving entity may derive a spatial filter matrix for each subband based on a MIMO channel response matrix for that subband and perform receiver spatial processing for the subband with the spatial filter matrix.
摘要:
A user terminal supports multiple spatial multiplexing (SM) modes such as a steered mode and a non-steered mode. For data transmission, multiple data streams are coded and modulated in accordance with their selected rates to obtain multiple data symbol streams. These streams are then spatially processed in accordance with a selected SM mode (e.g., with a matrix of steering vectors for the steered mode and with the identity matrix for the non-steered mode) to obtain multiple transmit symbol streams for transmission from multiple antennas. For data reception, multiple received symbol streams are spatially processed in accordance with the selected SM mode (e.g., with a matrix of eigenvectors for the steered mode and with a spatial filter matrix for the non-steered mode) to obtain multiple recovered data symbol streams. These streams are demodulated and decoded in accordance with their selected rates to obtain multiple decoded data streams.
摘要:
A wireless repeater includes a channel estimation block to estimate a feedback channel between the antennas of the repeater using frequency domain channel estimation. The repeater includes a pilot signal blanking circuit to blank out a selected number of samples of the pilot signal to improve the accuracy of the channel estimation. In another embodiment, the repeater replaces T samples of the pilot signal with a cyclic prefix.
摘要:
A transmitting entity uses different steering vectors for different subbands to achieve steering diversity. Each steering vector defines or forms a beam for an associated subband. Any steering vector may be used for steering diversity. The steering vectors may be defined such that the beams vary in a continuous instead of abrupt manner across the subbands. This may be achieved by applying continuously changing phase shifts across the subbands for each transmit antenna. As an example, the phase shifts may change in a linear manner across the subbands for each transmit antenna, and each antenna may be associated with a different phase slope. The application of linearly changing phase shifts to modulation symbols in the frequency domain may be achieved by either delaying or circularly shifting the corresponding time-domain samples.
摘要:
Techniques for facilitating random access in wireless multiple-access communication systems. A random access channel (RACH) is defined to comprise a 'fast' RACH (F-RACH) and a 'slow' RACH (S-RACH). The F-RACH and S-RACH can efficiently support user terminals in different operating states and employ different designs. The F-RACH can be used to quickly access the system, and the S-RACH is more robust and can support user terminals in various operating states and conditions. The F-RACH may be used by user terminals that have registered with the system and can compensate for their round trip delays (RTDs) by properly advancing their transmit timing. The S-RACH may be used by user terminals that may or may not have registered with the system, and may or may not be able to compensate for their RTDs. The user terminals may use the F-RACH or S-RACH, or both, to gain access to the system.
摘要:
Techniques for quickly sending feedback information for beamforming are described. A transmitter/initiator sends a first frame comprising training symbols. A receiver/responder receives the first frame, determines the amount of time to generate feedback information, and determines the amount of time to send the feedback information. The receiver then determines the length of a second frame carrying the feedback information based on the amounts of time to generate and send the feedback information. The receiver sends the second frame after waiting a short interframe space (SIFS) period from the end of the first frame, without performing channel access. The receiver generates the feedback information based on the training symbols and sends the information in the second frame when ready. The transmitter receives the second frame, derives at least one steering matrix based on the feedback information, and sends a third frame with the at least one steering matrix.