Abstract:
Proposed are various embodiments of projection systems that generally provide stereoscopic images. The projection systems act to split a spatially separated image in a stereoscopic image frame and superimpose the left- and right-eye images on a projection screen with orthogonal polarization states. The embodiments are generally well suited to liquid crystal polarization based projection systems and may use advanced polarization control.
Abstract:
Disclosed is an imaging directional backlight polarization recovery apparatus including an imaging directional backlight with at least a polarization sensitive reflection component with optional polarization transformation and redirection elements. Viewing windows may be formed through imaging individual light sources and hence defines the relative positions of system elements and ray paths. The base imaging directional backlight systems provide substantially unpolarized light primarily for the illumination of liquid crystal displays (LCDs) resulting in at least 50% loss in light output when using a conventional sheet polarizer as input to the display. The invention herein introduces a polarization sensitive reflecting element to separate desired and undesired polarization states for the purposes of transformation and redirection of the reflected light for usable illumination. Polarization transformation and redirection can be provided by additional components such as retarder films and specular mirror surfaces.
Abstract:
An imaging directional backlight apparatus including a waveguide, a light source array, for providing large area directed illumination from localized light sources. The waveguide may include a stepped structure, in which the steps may further include extraction features optically hidden to guided light, propagating in a first forward direction. Returning light propagating in a second backward direction may be refracted, diffracted, or reflected by the features to provide discrete illumination beams exiting from the top surface of the waveguide. Viewing windows are formed through imaging individual light sources and hence defines the relative positions of system elements and ray paths. The uncorrected system creates non-illuminated void portions when viewed off-axis preventing uniform wide angle 2D illumination modes. The system may be corrected to remove this non uniformity at wide angles through the introduction of additional sources away from the system's object plane, additional imaging surfaces, and/or by altering ray paths.
Abstract:
Generally, near seamless electronics displays may be employed in cinema and exhibition applications. Laser scanned displays may be enabled such that the display may display three dimensional (“3D”) content. A first method to enable a laser scanned display for 3D content may employ polarization, with or without polarization conversion and another method may employ multiple colors. Additionally, the envelope function that may be employed across the display may be achieved by changing laser power as a beam is scanned on the screen or by changing the dwell time of the laser beam on the pixels. One method of minimizing the effects of seams in the screen may be to reduce the screen resolution near the seams by screen design and/or laser beam dwell time or illumination energy.
Abstract:
A directional backlight for a transmissive spatial light modulator comprises a waveguide having an input end, first and second, opposed guide surfaces for guiding light along the waveguide, and a reflective end facing the input end for reflecting light from the input light back through the waveguide. An array of light sources that output light predominantly in an emission band and in a conversion band are disposed across the input end of the waveguide and light is directed into respective optical windows in output directions distributed in the lateral direction in dependence on the input positions. To achieve crosstalk suppression, disposed between the input end and the light sources is a reflection reduction element that comprises a filter arranged to absorb light in the conversion band preferentially over light in the emission band, thereby reducing reflections of light incident on the input end after reflection from the reflective end.
Abstract:
Disclosed is an autostereoscopic display apparatus comprising a light guiding valve apparatus including an imaging directional backlight, an illuminator array and an observer tracking system arranged to achieve control of an array of illuminators which may provide a directional display to an observer over a wide lateral and longitudinal viewing range with low flicker.
Abstract:
Disclosed is an imaging directional backlight apparatus for providing large area uniform directed illumination from localized light sources. Within an exemplary optical valve system, a waveguide comprises a stepped structure, where the steps comprise extraction features hidden to guided light, propagating in a first forward direction. Returning light propagating in a second backward direction may be refracted, diffracted, or reflected by the features to provide discrete illumination beams exiting from the top surface of the waveguide. Such controlled illumination may provide for efficient, multi-user autostereoscopic displays as well as improved 2D display functionality. Illumination uniformity is provided by the positioning, packaging, and optically modifying of individual input sources. The latter employs non-imaging and refractive optics.
Abstract:
Disclosed is an optical inline light guiding apparatus which may include a substantially parallel planar light expansion section and a light extraction section comprising a stepped structure, in which the steps may be extraction features and guiding features. Such controlled illumination may provide for efficient, multi-user autostereoscopic displays with wide viewing freedom, high efficiency and low cross talk and other directional display uses.
Abstract:
Optical systems, such as 2-D and 3-D projection systems, may be configured to have a compact back focal length to allow for more compact projection lenses, lower throw ratios, improved contrast, or any combination thereof. In an embodiment, an optical system may include a relay element configured to form an intermediate image having a focal point proximate to a projection lens.