摘要:
A method of using diluted nitric acid and an edge bead removal tool to remove copper from the perimeter of a semiconductor wafer is provided. In one method, sensitive areas of the wafer are covered with photoresist, and the wafer perimeter cleared of photoresist, before the acid is applied In another method, sensitive areas of the wafer are protected with water spray as the copper etchant is applied. In a third method, the nitric acid is applied to clear the wafer perimeter of copper before a chemical mechanical polishing (CMP) is performed on the layer of deposited copper. The excess thickness of copper protects copper interconnection structures from reacting with the copper etchant. All these methods permit copper to be removed at a low enough temperature that copper oxides are not formed. A semiconductor wafer cleaned of copper in accordance with the above-described method, and a system for low temperature copper removal is also provided.
摘要:
Copper is applied to integrated circuit substrates for example by chemical vapor deposition using a Cu(hfac) (silylolefin ligand) precursor including combinations of C1-C8 alkyl groups with at least one C2-C8 alkyloxy group. The improved copper complex-ligand bond helps ensure that the ligand separates from the (hfac)Cu complex at consistent temperatures when Cu is to be deposited. Combinations of alkyloxy and alkyl groups allow the molecular weight of the precursor to be manipulated so that the volatility of the precursor is adjustable for specific process scenarios and additional silylolefins, hexafluoroacetylacetone (H-hfac), H-hfac dihydrate and water may be used separately or in combination to enhance deposition rate, conductivity, and precursor stability.
摘要:
Copper is applied to integrated circuit substrates, for example, by chemical vapor deposition using a copper precursor of a dimethoxymethylvinylsilane (dmomvs), or a methoxydimethylvinylsilane (modmvs) silylolefin ligand bonded to (hfac)Cu. The improved copper complex-ligand bond helps ensure that the ligand separates from the (hfac)Cu complex at consistent temperatures when Cu is to be deposited. Water vapor may be added to the precursor to improve the conductivity of the deposited Cu, and additional silylolefins, hexafluoroacetylacetone (H-hfac), and water may be used separately or in combination to enhance deposition rate, conductivity, and precursor stability.
摘要:
A method of using diluted nitric acid and an edge bead removal tool to remove copper from the perimeter of a semiconductor wafer is provided. In one method, sensitive areas of the wafer are covered with photoresist, and the wafer perimeter cleared of photoresist, before the acid is applied In another method, sensitive areas of the wafer are protected with water spray as the copper etchant is applied. In a third method, the nitric acid is applied to clear the wafer perimeter of copper before a chemical mechanical polishing (CMP) is performed on the layer of deposited copper. The excess thickness of copper protects copper interconnection structures from reacting with the copper etchant. All these methods permit copper to be removed at a low enough temperature that copper oxides are not formed. A semiconductor wafer cleaned of copper in accordance with the above-described method, and a system for low temperature copper removal is also provided.
摘要:
Copper is applied to integrated circuit substrates for example by chemical vapor deposition using a Cu(hfac) (silylolefin ligand) precursor including combinations of C1-C8 alkyl groups with at least one C2-C8 alkyloxy group. The improved copper complex-ligand bond helps ensure that the ligand separates from the (hfac)Cu complex at consistent temperatures when Cu is to be deposited. Combinations of alkyloxy and alkyl groups allow the molecular weight of the precursor to be manipulated so that the volatility of the precursor is adjustable for specific process scenarios and additional silylolefins, hexafluoroacetylacetone (H-hfac), H-hfac dihydrate and water may be used separately or in combination to enhance deposition rate, conductivity, and precursor stability.
摘要:
Copper is applied to integrated circuit substrates, for example, by chemical vapor deposition using a copper precursor of a dimethoxymethylvinylsilane (dmomvs), or a methoxydimethylvinylsilane (modmvs) silylolefin ligand bonded to (hfac)Cu. The improved copper complex-ligand bond helps ensure that the ligand separates from the (hfac)Cu complex at consistent temperatures when Cu is to be deposited. Water vapor may be added to the precursor to improve the conductivity of the deposited Cu, and additional silylolefins, hexafluoroacetylacetone (H-hfac), and water may be used separately or in combination to enhance deposition rate, conductivity, and precursor stability.
摘要:
An apparatus for removing copper from semiconductor wafer disk having top and bottom surfaces, with top surface edges and sides along the top surface edge around the perimeter of the wafer surfaces comprises: an enclosed chamber; a spin-chuck to rotate the mounted wafer; a first solution application nozzle having at least one position approximately above the wafer edge to spray diluted copper etchant solution at room temperature towards the sides and perimeter edge of the wafer, to remove copper from the sides and perimeter edge of the wafer; a second nozzle having at least one position approximately above the wafer perimeter to spray a protective coating etchant upon the edge of the wafer top surface along the perimeter, whereby protective coating, masking copper interconnection structures on the wafer top surface, is removed on the edge of the top surface and the wafer side before copper etchant is applied; and a third solution application nozzle having at least one position approximately above the center of the wafer to spray de-ionized water on the wafer, whereby the water is used to remove etchants and etchant compounds from the wafer.
摘要:
Chemical vapor deposition (CVD) of copper (Cu) to integrated circuit substrates uses as Cu precursor a Cu(hfac)(ligand) including a silylolefin ligand including combinations of C1-C8 alkyl groups with at least one C2-C8 alkyloxy group, combinations of ethyl and ethoxy groups being preferred. The alkyloxy oxygens and the long carbon chains of the alkyl and alkyloxy groups increase precursor stability by contributing electrons to the Cu(hfac) complex to assist ligand separation from the complex at consistent temperatures. Selection of alkyloxy and alkyl groups enables precursor volatility to be adjusted to specific process scenarios.