摘要:
A negative electrode material for a nonaqueous electrolyte secondary battery having a high discharge capacity and a good cycle life is made from alloy particles having an average particle diameter of 0.1 - 50 µm and including Si phase grains 40 and a phase of a solid solution or an intermetallic compound of Si and other element selected from Group 2A elements, transition elements, Group 3B elements, and Group 4B elements from the long form periodic table (for example, an NiSi 2 phase 42 and an [NiSi 2 + NiSi] phase 41) at least partially enveloping the Si phase grains. 5-99 wt% of this material is Si phase grains. The alloy particles can be manufactured by rapid solidification (such as atomization or roller quenching) of a melt including Si and the other element or by adhering the other element to Si powder by electroless plating or mechanical alloying and then performing heat treatment. Even if rapid solidification is carried out, a negative electrode material having a good discharge capacity and cycle life is obtained without heat treatment.
摘要:
To obtain a nonaqueous secondary battery having a large capacity and a smell irreversible capacity while maintaining cycle characteristics, a composite particle comprising a core particle composed of a solid phase A and a coating layer composed of a solid phase B covering at least a part of the core particle is used for the negative electrode of a nonaqueous secondary battery, and at least one of the solid phase A and the solid phase B is made amorphous.
摘要:
A non-aqueous electrolyte secondary battery containing an alloy particle capable of absorbing and desorbing lithium in the negative electrode has a short cycle life and is insufficient in high-rate discharge characteristics, since the alloy particle is pulverized during charge/discharge cycles. In order to solve this problem, a negative electrode is employed, which comprises an alloy particle containing: at least two selected from the group consisting of metal elements and semimetal elements; oxygen; and nitrogen. It is preferred that the alloy particle have a phase A capable of electrochemically absorbing and desorbing lithium ion and a phase B having lithium ion conductivity or lithium ion permeability and that the phase B contain larger amounts of oxygen and nitrogen than the phase A.
摘要:
The present invention relates to non-aqueous electrolyte secondary batteries comprising an positive electrode and a negative electrode capable of intercalating and de-intercalating lithium, a non-aqueous electrolyte and separators or solid electrolytes. The negative electrode contains, as a main component , composite particles constructed in such a manner that at least part of the surface of nuclear particles comprising at least one of tin, silicon and zinc as a constituent element, is coated with a solid solution or an inter-metallic compound composed of the element included in the nuclear particles and another predetermined element which is not an element included in the nuclear particles. To improve the ability of the battery, the composite particles mentioned above can include at least one trace element selected from iron, lead and bismuth. The porosity of a mixture layer at the negative electrode is 10% or more and 50% or less. The amount of the non-aqueous electrolyte, the thickness of the separators or the like is restricted in a specific value. The foregoing construction suppresses occurrence of an internal short circuit between the positive electrode and the negative electrode caused by expansion of the negative electrode materials , thereby achieving a high capacity battery with a superior charge/discharge cycle properties, which is suitable for a high-speed charging.