Abstract:
An incorrect or wrong diagnosis in abnormality diagnosis of a sensor is suppressed. Provided at the downstream side of an NOx selective reduction catalyst is a sensor which detects NOx and ammonia in an exhaust gas flowing out of the NOx selective reduction catalyst, and in which the NOx and the ammonia react with each other. An amount of decrease in an output of the sensor due to a reaction of the NOx and the ammonia in the sensor is calculated based on the NOx and the ammonia flowing out of the NOx catalyst, and an abnormality diagnosis of the sensor is carried out based on this amount of decrease in the output of the sensor.
Abstract:
The degree of deterioration of a catalyst is obtained accurately in cases where a plurality of catalysts is disposed at an exhaust passage of an internal combustion engine. Under the assumption that the degree of deterioration of a catalyst which is disposed at a location upstream of an NO 2 selective reduction catalyst and has an oxidizing ability is at a predetermined value, the ratio of NO 2 in the NO x which inflows into the NO x selective reduction catalyst is estimated; the NO x removal rate of the NO x selective reduction catalyst is calculated a plurality of times at least until a local maximum value is obtained; and the degree of deterioration of the catalyst having an oxidizing ability is determined by comparison between the ratio of NO 2 observed when the NO x removal rate of the NO x selective reduction catalyst reaches the local maximum value and a reference value of the ratio.
Abstract:
In a failure determination system that performs failure determination of an exhaust gas purification apparatus having a NOx selective catalytic reduction catalyst (NOx catalyst) that is disposed in an exhaust passage of an internal combustion engine and uses ammonia as a reducing agent, the failure determination of the exhaust gas purification apparatus is performed by a failure determination unit, based on a detected value of a NOx sensor that detects NOx in exhaust gas. Then, based on an adsorption amount difference at assumed failure that is the difference between an ammonia equilibrium adsorption amount in the NOx catalyst in an equilibrium state of ammonia adsorption, assuming that the exhaust gas purification apparatus is in a predefined failure state, and an actual ammonia adsorption amount in the NOx catalyst, the failure determination itself by the failure determination unit is inhibited or the use of the NOx sensor in the failure determination is restricted. Accordingly, in the failure determination system of exhaust gas purification apparatus having the NOx selective catalytic reduction catalyst, erroneous determinations at the time of failure determination are suppressed, thereby further improving the accuracy of the failure determination.
Abstract:
It is determined quickly whether there is a shortage in reducing agent supplied to an NOx selective reduction catalyst. After it is determined that a quantity of reducing agent equal to or larger than a predetermined quantity is absorbed in the NOx selective reduction catalyst on the assumption that there is no abnormality in reducing agent supply unit, the supply of a quantity of reducing agent needed to reduce a quantity of NOx flowing into the NOx selective reduction catalyst is started. A determination of an abnormality in the reducing agent supply unit is made based on the NOx removal rate after the lapse of a predetermined period of time since the start of the supply of reducing agent. The NOx removal rate becomes lower when there is an abnormality in the reducing agent supply unit.
Abstract:
An object of the invention is to suppress a reduction in accuracy of abnormality diagnosis with an abnormality diagnosis device for an exhaust gas control apparatus that performs the abnormality diagnosis regarding the exhaust gas control apparatus by using the amount of NO x flowing into an SCR catalyst as a parameter. In the abnormality diagnosis device for an exhaust gas control apparatus according to the invention provided with an exhaust gas control apparatus including the SCR catalyst, a supply device supplying ammonia to the exhaust gas control apparatus, an EGR device allowing some of exhaust gas to flow back to an intake passage from an exhaust passage further downstream than the supply device, acquiring means for acquiring a NO x inflow amount as the amount of NO x flowing into the exhaust gas control apparatus, and diagnostic means for diagnosing an abnormality of the exhaust gas control apparatus by using the NO x inflow amount acquired by the acquiring means as a parameter, the abnormality diagnosis regarding the exhaust gas control apparatus by the diagnostic means is prohibited in a case where the amount of the ammonia allowed to flow back along with the exhaust gas by the EGR device exceeds an upper limit value.
Abstract:
An air-fuel ratio control system of a multi-cylinder internal combustion engine provided with a throttle valve and opening characteristic control means, which system performs feedback control of an air-fuel ratio based on an output of a sensor detecting an air-fuel ratio of exhaust gas and is capable of performing more accurate air-fuel ratio control, is provided. In the feedback control, the relationship of the output of the sensor and a feedback value is corrected based on a feedback learning correction value learned and determined based on the output of the sensor during the feedback control, and, when newly learning the feedback learning correction value, the intake air amount is controlled by only the throttle valve.
Abstract:
An exhaust control system for an internal combustion engine comprises: a trapping capability acquisition part that obtains information regarding a PM trapping capability, based on a detection value of an exhaust sensor provided to detect a predetermined parameter relating to an exhaust gas flowing out of an SCRF; and a NOx reduction capability acquisition part obtains information regarding a NOx reduction capability, based on an amount of NOx in the exhaust gas flowing out of the SCRF. The exhaust control system determines and distinguishes between a trapping abnormal state in which a PM trapping function by the SCRF is failed and a sensor abnormal state in which a detection function of the predetermined parameter by the exhaust sensor is failed, based on the NOx reduction capability obtained by the NOx reduction capability acquisition part, when the trapping capability obtained by the trapping capability acquisition part is in a predetermined low trapping capability state. This allows for accurate abnormality determination with regard to the SCRF in the exhaust control system for the internal combustion engine having the SCRF.