摘要:
A technique for cancelling or reducing crosstalk signals between controlled oscillators in an integrated circuit is provided. The technique involves an arrangement adapted to reduce a crosstalk signal generated by a first controlled oscillator to a second oscillator both comprised in the integrated circuit, wherein both controlled oscillators are configured to output a respective clock signal. The arrangement comprises a detector adapted to detect the crosstalk signal generated by the first controlled oscillator to the second controlled oscillator, a crosstalk cancellation circuit adapted to generate a cancellation signal having an amplitude substantially the same as that of the crosstalk signal and a phase substantially opposite to that of the crosstalk signal, and a cancellation signal injector adapted to introduce the cancellation signal into the second controlled oscillator.
摘要:
A transformer filter arrangement (30) for passing signals at a fundamental frequency and suppressing signals at one or more interfering frequencies is disclosed. It comprises a transformer (100) having a first winding (110) and a second winding (120), wherein the first winding (110) has a first end (112a) and a second end (122b) and the second winding (120) has a first end (122a) and a second end (122b). It further comprises one or more capacitors (130a-e). For each capacitor (130a-c) of a first set of at least one capacitor of the one or more capacitors (130a-e), the capacitor (130a-c) is connected between a pair of taps (a1, a2; b1, b2; c1, c2) of the first winding (110), wherein each tap (a1, a2, b1, b2, c1, c2) of the pair of taps (a1, a2; b1, b2; c1, c2) is located between the first end (112a) and the second end (112b) of the first winding (110), and the capacitor (130a-c), together with an inductive sub segment (140a-c) of the first winding (110), which is connected in parallel with the capacitor (130a-c) between the pair of taps (a1, a2; b1, b2; c1, c2), forms a parallel LC circuit which is tuned to resonate at one of said interfering frequencies for suppressing signals at said one of the interfering frequencies. A corresponding integrated circuit, a corresponding radio receiver circuit, a corresponding radio transmitter circuit, and a corresponding radio communication apparatus are also disclosed.
摘要:
A technique for generating a radio frequency signal (302) based on a baseband signal (304) is provided. As to a method aspect of the technique, a baseband signal (304) is modified by adding an offset signal to the baseband signal (304). The offset signal prevents the modified baseband signal (316) from entering a first signal region. An amplitude signal (r) and a phase signal (Õ) is provided based on the modified baseband signal (316). The phase signal (Õ) is modulated to a carrier frequency (É c ). The modulated phase signal (Õ) is amplified according to the amplitude signal (r) to generate a preliminary radio frequency signal (318). An offset compensation signal (320) is derived from the offset signal (314) and fed into the preliminary radio frequency signal (318). The offset compensation signal (320) essential cancels a frequency component, which corresponds to the offset signal (314), in the radio frequency signal (302).
摘要:
A transmitter comprising a power amplifier, a phase modulator, a switched DC-DC converter, all operating in dual mode, and a controller is disclosed. The power amplifier is arranged to selectively operate either in a first mode or in a second mode, wherein the first mode is a linear mode and the second mode is a non-linear mode in order to save power with least increasing cost in hardware. The transmitter is adapted to operate at different allocated bandwidths, for different radio standards while keeping minimum power consumption governed by the controller. A transceiver, a communication device, a method and a computer program are also disclosed.
摘要:
The disclosure relates to a Complex Intermediate Frequency (CIF)-based receiver adapted to process a received signal comprising a signal component at a desired frequency and a signal component as an image frequency. The CIF-based receiver determines the power of the received signal by calibrating the receiver to minimize the power of the signal component at the image frequency that interferes with the signal component at the desired frequency, introduces signal leakage from the image frequency to intentionally degrade the quality of the signal component at the desired frequency, and determines the power of the signal component at the image frequency based on the amount of degradation.