摘要:
The presently disclosed subject matter provides for methods and compositions for treating cancer (e.g., multiple myeloma). It relates to anti-CD56 antibodies, chimeric antigen receptors (CARs) that specifically target human CD56, and immunoresponsive cells comprising such CARs. The presently disclosed CD56-specific CARs have enhanced immune-activating properties, including anti-tumor activity.
摘要:
Described herein is the use of phage display antibody engineering technology and synthetic peptide screening to identify SD1 and SD2, human single-domain antibodies to mesothelin. SD1 recognizes a conformational epitope at the C-terminal end (residues 539-588) of human mesothelin close to the cell surface. SD2 binds full-length mesothelin. To investigate SD1 as a potential therapeutic agent, a recombinant human Fc (SD1-hFc) fusion protein was generated. The SD1-hFc protein exhibits strong complement-dependent cytotoxicity (CDC), in addition to antibody-dependent cellular cytotoxicity (ADCC), against mesothelin-expressing tumor cells. Furthermore, the SD1-hFc protein causes significant tumor growth inhibition of tumor xenografts in nude mice. SD1 and SD2 are the first human single-domain antibodies targeting mesothelin-expressing tumors.
摘要:
The present invention relates, in general, to HIV-1 specific antibodies and, in particular, to broadly neutralizing HIV-1 specific antibodies that target the gp41 membrane-proximal external region (MPER). The present invention also relates to a cell culture system, more specifically, to a method of rendering chronic lymphocytic leukemia B-cells immortal and to a method of isolating anti-viral antibodies from clones of such cells.
摘要:
The presently disclosed subject matter provides for methods and compositions for enhancing the immune response toward cancers and pathogens. It relates to chimeric antigen receptors (CARs) that specifically target human mesothelin, and immunoresponsive cells comprising such CARs. The presently disclosed mesothelin-targeted CARs have enhanced immune-activating properties, including anti-tumor activity.
摘要:
Described herein is the identification of human monoclonal antibodies that bind GPC3 or heparan sulfate (HS) chains on GPC3 with high affinity. The antibodies described herein are capable of inhibiting HCC cell growth and migration. Provided are human monoclonal antibodies specific for GPC3 or HS chains on GPC3, including immunoglobulin molecules, such as IgG antibodies, as well as antibody fragments, such as single-domain VH antibodies or single chain variable fragments (scFv). Further provided are compositions including the antibodies that bind GPC3 or HS chains on GPC3, nucleic acid molecules encoding these antibodies, expression vectors comprising the nucleic acids, and isolated host cells that express the nucleic acids. Methods of treating cancer and/or inhibiting tumor growth or metastasis are also provided. Further provided are methods of detecting cancer in a subject and confirming a diagnosis of cancer in a subject.
摘要:
Described herein is the use of phage display antibody engineering technology and synthetic peptide screening to identify SD1 and SD2, human single-domain antibodies to mesothelin. SD1 recognizes a conformational epitope at the C-terminal end (residues 539-588) of human mesothelin close to the cell surface. SD2 binds full-length mesothelin. To investigate SD1 as a potential therapeutic agent, a recombinant human Fc (SD1-hFc) fusion protein was generated. The SD1-hFc protein exhibits strong complement-dependent cytotoxicity (CDC), in addition to antibody-dependent cellular cytotoxicity (ADCC), against mesothelin-expressing tumor cells. Furthermore, the SD1-hFc protein causes significant tumor growth inhibition of tumor xenografts in nude mice. SD1 and SD2 are the first human single-domain antibodies targeting mesothelin-expressing tumors.