摘要:
A gas channel forming plate includes protrusions, which extend parallel with each other, gas channels that are respectively located between each adjacent pair of the protrusions, and water channels, which are respectively formed on the back surface of each protrusion. Each protrusion includes first communication portions and second communication portions. Each first communication portion includes a first opening. Each second communication portion includes a second opening. The second communication portions of each protrusion constitute an expanding region, in which the opening area of the second opening in each second communication portion is greater than the opening area of the first opening of each first communication portion, to limit introduction of water to the water channel on the back side of the protrusion using capillary action by the second communication portions.
摘要:
To provide an air vehicle configured to stabilize the power output of a fuel cell by securing the generated water discharge property of the fuel cell. An air vehicle, wherein the air vehicle comprises two or more fuel cells; wherein each fuel cell comprises an anode outlet manifold; and wherein each fuel cell is disposed in the air vehicle so that water discharge directions of the anode outlet manifolds are different from each other.
摘要:
To provide a fuel cell system configured to increase fuel cell performance even at high altitude. A fuel cell system for air vehicles, wherein the fuel cell system comprises: a fuel cell, an oxidant gas system for supplying oxidant gas to the fuel cell, an altitude sensor, and a controller; wherein the oxidant gas system comprises an air compressor and a bypass flow path bypassing the fuel cell; wherein the bypass flow path comprises a bypass valve; and wherein, when the controller detects an altitude increase measured by the altitude sensor, the controller increases a rotational speed of the air compressor, and the controller increases an opening degree of the bypass valve.
摘要:
A separator for fuel cell includes a corrugated portion formed to have a corrugated cross section where a first groove that is concave to a first surface to form a flow path for a first fluid on the first surface and a second groove that is concave to a second surface opposite to the first surface to form a flow path for a second fluid on the second surface are arranged alternately and repeatedly. Each of the second grooves has at least one shallower groove section formed to have a less depth from the second surface than depth of a remaining groove section and provided to form a communication flow channel on the first surface side, which is arranged to communicate between two flow path spaces for the first fluid that are adjacent to each other across the shallower groove section.
摘要:
A fuel cell system for air vehicles, wherein the fuel cell system comprises: a fuel cell, a fuel gas system for supplying fuel gas to the fuel cell, a potential sensor, and a controller; wherein the fuel gas system comprises a fuel gas supplier; wherein the controller determines whether or not a potential of the fuel cell measured by the potential sensor, is a reversal potential; and wherein, when the controller determines that the potential of the fuel cell is a reversal potential, the controller increases a fuel gas supply from the fuel gas supplier to the fuel cell.
摘要:
A gas flow passage-forming member (10) is disposed between a membrane electrode and gas diffusion layer assembly (12) and a separator (13) of a fuel cell, and the gas flow passage-forming member (10) is configured to form a gas flow passage (Ar). The gas flow passage-forming member (10) has a corrugated shape such that groove portions (31, 33) and ridge portions (32, 34) are provided on each of a front side and a back side of the gas flow passage-forming member (10). The groove portions (31) each serve as the gas flow passage (Ar). The gas flow passage-forming member (10) has communication holes (41) providing communication between the front side and the back side, and the communication holes (41) are provided in a region downstream of an upstream region (30A) in a gas flow direction. The upstream region (30A) is a non-communication region with no communication hole (41).
摘要:
A fuel cell is formed by laminating a plurality of power generating units. The power generating unit includes: a membrane electrode gas diffusion layer assembly; a sealing portion disposed along its outer circumference; a porous body flow path in which oxidant gas supplied to a cathode-side catalytic layer flows; a shielding plate provided between the sealing portion and the porous body flow path; and first, second separator plates configured to sandwich the membrane electrode gas diffusion layer assembly and the porous body flow path therebetween. The shielding plate, the porous body flow path, and the first separator plate making contact with the porous body flow path project into the oxidant exhaust gas discharge manifold determined by the sealing portion.
摘要:
A separator for fuel cell includes a corrugated portion formed to have a corrugated cross section where a first groove that is concave to a first surface to form a flow path for a first fluid on the first surface and a second groove that is concave to a second surface opposite to the first surface to form a flow path for a second fluid on the second surface are arranged alternately and repeatedly. Each of the second grooves has at least one shallower groove section formed to have a less depth from the second surface than depth of a remaining groove section and provided to form a communication flow channel on the first surface side, which is arranged to communicate between two flow path spaces for the first fluid that are adjacent to each other across the shallower groove section.
摘要:
To provide a fuel cell system configured to prevent the freezing of the gas and water discharge valve of the fuel gas system even at high altitude. A fuel cell system for air vehicles, wherein the fuel cell system comprises: a fuel cell, a fuel gas system for supplying fuel gas to the fuel cell, a cooling system for controlling a temperature of the fuel cell, an altitude sensor, a temperature sensor, and a controller, and wherein, when the controller detects an altitude increase measured by the altitude sensor, and when a temperature of the gas and water discharge valve measured by the temperature sensor is less than a predetermined temperature, the controller increases a temperature of the refrigerant by controlling the three-way valve to circulate the refrigerant in the heating flow path and operating the circulation pump and the water heater to heat the refrigerant.