Abstract:
An endoluminal vascular repair system includes an aorta stent graft having a fenestration with a first reinforcement around the fenestration. The fenestration aligns with a branch vessel when deployed. A branch vessel stent graft has a flaring portion at a proximal end of the branch vessel prosthesis that has a second reinforcement around its circumference to engage the reinforcement around the fenestration, and a tubular portion. When deployed, the flaring portion retains the proximal end within the aorta stent graft, and the tubular portion extends through the fenestration and into the branch vessel.
Abstract:
An aortic graft assembly (10) includes a tubular component (12) that defines a wall aperture (20) having a proximal end (22) that extends perpendicular to a major longitudinal axis (24) of the tubular aortic component, and a tunnel graft (28) connected to the wall (18) of the tubular aortic component and extending from the wall aperture toward a proximal end (14) of the tubular aortic component. The method for delivery of the aortic graft assembly includes delivering the aortic graft assembly through the wall aperture and into interfering relation with the tunnel graft.
Abstract:
A method, device, or system for treating eye disorders or conditions, comprising restoring or increasing blood flow or blood flow rate in an artery that supplies blood to or in the eye, thereby increasing the amount of oxygen that reaches the eye or a portion thereof.
Abstract:
Medical devices and method for making and using the same are disclosed. An example medical device may include implantable medical device for use along the biliary and/or pancreatic tract. The implantable medical device may include a tubular member having a first end configured to be disposed within the duodenum of a patient and a second end configured to be disposed adjacent to a pancreatic duct and/or bile duct. The tubular member may have a body including one or more wire filaments that are woven together. The tubular member may also have an outer surface with a longitudinal channel formed therein.
Abstract:
Flared stents are disclosed, and apparatus and methods for delivering such stents into a bifurcation between a main vessel and a branch vessel. The stent includes a first tubular portion a second flaring portion that may be flared radially outwardly to contact the ostium. The stent may include variable mechanical properties along its length. The stent may be delivered using a catheter including proximal and distal ends, the stent overlying first and second balloons on the distal end. During use, the catheter is advanced through an ostium into the branch to place the stent within the branch. The first balloon is expanded to flare the stent to contact a wall of the ostium, thereby causing the stent to migrate partially into the ostium. The second balloon is expanded to filly expand the stent within the ostium and branch.
Abstract:
The present invention relates to an endoluminal device for implantation in a body lumen, such as a pancreatic duct. The device is provided with a distal end region having greater flexibility than that of a medial region of the device.
Abstract:
A catheter for delivering an expandable prosthetic device is disclosed. The catheter has a guidewire channel for delivering a side branch guidewire to a side branch target site. An expandable prosthetic device can be loaded on to the distal end of the catheter.
Abstract:
An ostial stent is operable to be placed at the ostium of a patient's vascular system so as to improve vessel patency in the ostial region. The ostial stent includes a stent tube that presents spaced apart proximal and distal stent openings and a longitudinal stent passage that extends between the openings. The stent tube includes a selectively-expandable tube section and a self-expandable tube section. The self-expandable tube section projects longitudinally from one of the stent openings, and is automatically expandable to a flared condition for placement within the ostium.
Abstract:
Apparatus and methods are described including a valve (34) that includes valve leaflets (33) and a non-branched valve frame (31) configured to support the valve leaflets, the frame defining a single longitudinal axis thereof, the longitudinal axis being a generally straight line along a full length of the frame. The valve (34) is placed at least partially within a renal vein of a subject. The valve defines an open state thereof in which the valve leaflets (33) allow generally unimpeded antegrade blood flow therethrough, and a closed state thereof in which the valve leaflets (33), in a passive manner, reduce venous pressure within the renal vein relative to central venous pressure of the subject. Other applications are also described.
Abstract:
A stent graft for implantation into a thoracic arch into a which a side arm can be deployed. The stent graft comprises a primary prosthesis (20) with a fenestration (85) and graft material tube (87) for receiving a second prosthesis. The graft material tube (87) includes at least a portion which extends into the primary prosthesis (20) and which is angled in a proximal direction to direct blood flowing from the heart to the branch artery. The graft material tube (87) also comprises an aperture (88) to accommodate a guide wire passing through the primary prosthesis (20) from a distal location into the graft material tube (87) and into the branch artery. The guide wire is configured to facilitate placement of a secondary prosthesis in the branch artery.