摘要:
The preparation method of radiation-sensitive copolymer carrier for coating radiated nanoparticles and/or chemotherapy drugs includes forming a nanosphere by diselenide block copolymers and DSPE-PEG-biomarkers to coat chemotherapy drugs and/or radiated nanoparticles that can be released from the opened nanosphere by protons penetrating tissue during proton therapy. The treatment effect of proton therapy is enhanced by two ways of using the radiated nanoparticles released from an opened nanosphere to produce nuclear fission with the protons for releasing electrons to destroy cancer cells of tumor and the chemotherapy drugs released from the opened nanosphere for distributing among tissue to kill the cancer cells of the tumor.
摘要:
A method of removing oxygen and water vapor and other oxygen bearing gas species from reactant gases comprising the use of an appropriate solution containing an active gettering metal, selected from the group of aluminum, magnesium, calcium and lithium in liquid phase through a moderate temperature range, including room temperature and above as an oxygen gettering step, through the formation of an oxide of said metal wherein the said metal becomes continuously available for oxidation by exposing the said unreacted metal to the gas by bubbling the reactant gas through a ternary melt of gallium-indium and the said metal in a nonreactive container and maintaining in solid phase an excess of the active gettering method so that the capacity for removing the oxygen and water vapor and other oxygen bearing gas species may be extended by the active metal going into solution in the melt from the solid as the metal oxide is formed and goes out of solution.
摘要:
Provided is a more suitable method for producing ceramic microparticles. The present invention uses at least two types of fluids to be processed; at least one of the fluids to be processed is a fluid containing a ceramic starting material liquid that mixes and/ or dissolves a ceramic starting material in a basic solvent; of the fluids aside from the ceramic starting material liquid, at least one of the fluids to be processed is a fluid containing a solvent for precipitating ceramic microparticles; and ceramic microparticles are precipitated by mixing the fluid containing the ceramic starting material liquid and the fluid containing the solvent for precipitating ceramic microparticles within a thin film fluid formed between at least two surfaces (1,2) for processing that are provided facing each other, are able to approach and separate each other, and of which one is able to rotate with respect to the other. Ceramic microparticles having as increased crystallinity are obtained by mixing the fluid containing the precipitated ceramic microparticles precipitate and a fluid containing an acidic substance.
摘要:
A selenium ink comprising, as initial components: a liquid carrier; a selenium component comprising selenium; and, an organic chalcogenide component having a formula selected from RZ-Z'R' and R 2 -SH, a Group 1b component and a liquid carrier; wherein Z and Z' are each independently selected from sulfur, selenium and tellurium; wherein R is selected from H, C 1-20 alkyl group, a C 6-20 aryl group, a C 1-20 alkylhydroxy group, an arylether group and an alkylether group; wherein R' and R 2 are selected from a C 1-20 alkyl group, a C 6-20 aryl group, a C 1-20 alkylhydroxy group, an arylether group and an alkylether group; wherein the selenium ink comprises ≥ 1 wt% selenium; wherein the selenium ink is a stable dispersion and wherein the selenium ink is hydrazine and hydrazinium free. Also provided are methods of preparing the selenium ink and of using the selenium ink to deposit selenium on a substrate for use in the manufacture of a variety of chalcogenide containing semiconductor materials, such as, thin film transistors (TFTs), light emitting diodes (LEDs); and photoresponsive devices (e.g., electrophotography (e.g., laser printers and copiers), rectifiers, photographic exposure meters and photovoltaic cells) and chalcogenide containing phase change memory materials.
摘要:
Anodic slimes obtained from electrowinning copper often contain selenium, tellurium and gold and/or platinum group metals. Pyrometallurgical techniques require close control to avoid emission of highly toxic selenium, and the known hydrometallurgical technique suffers from the disadvantage of oxidising at least a substantial proportion of the selenium/tellurium to the IV oxidation state from which they have to be reduced before separation can occur. The present invention provides a convenient hydrometallurgical process for oxidising selenium and tellurium direct to the +IV oxidation state using dilute, mildly acidic aqueous hydrogen peroxide, preferably in an amount of from 150% to 300% of the stoichiometric amount, and at a concentration of 5 to 15% w/w obtained by diluting stabilised concentrated hydrogen peroxide. The selenium and tellurium can subsequently be separated using appropriate pH control and sulphur dioxide reduction.