摘要:
The invention relates to a process for producing a composition suitable as an accelerator for the hardening of cement, wherein the components aa) at least one component selected from the group of hydraulic binders and/or latently hydraulic binders and bb) at least one dispersant suitable for the dispersion of inorganic pigments in water and cc) water are contacted with one another, where the weight ratio of components aa) to cc) is between 1.5:1 and 1:70, where the weight ratio of components aa) to bb) is between 20:1 and 1:2. Further disclosed is the use of the composition obtained as setting accelerator for mixtures in construction chemistry.
摘要:
The invention provides novel aerated composite materials that possess excellent physical and performance characteristics of aerated concretes, and methods of production and uses thereof. These composite materials can be readily produced from widely available, low cost raw materials by a process suitable for large-scale production with improved energy consumption, desirable carbon footprint and minimal environmental impact.
摘要:
The invention relates to organopolysiloxane compositions curable by condensation reaction and comprising (A) at least one organosilicon component consisting of units of the formula R a (OH) b (R 1 O) c SiO (4-a-b-c)/2 (I), in which the radicals and indices are as defined in claim 1, with the proviso that in formula (I) the sum of a+b+c is
摘要:
Disclosed is a honeycomb support structure comprising a honeycomb body and an outer layer or skin formed of a cement that includes an inorganic filler material having a first coefficient of thermal expansion from 25C to 600 C and a crystalline inorganic fibrous material having a second coefficient of thermal expansion from 25C to 600 C. Skin cement composition controls level of cement liquid/colloid components, for example water, colloidal silica, and methylcellulose migration into the substrate during the skin application process to form barrier to skin wetting and staining during the washcoating process.
摘要:
This disclosure relates to hydrophobic metal phosphate ceramic comprising a Group IV element of silicon, germanium, tin, or lead having at least one hydrocarbon covalently bonded thereto. Methods of providing water proofing and/or anti-corrosion protection are provided.
摘要:
The invention provides novel paving stones and construction block composite materials and methods for preparation thereof. The paving stones and construction block composite materials can be readily produced from widely available, low cost precursor materials by a production process that involves compacting in a mold that is suitable for large-scale production. The precursor materials include calcium silicate, for example, wollastonite, and particulate filler materials which can comprise silicon dioxide-rich materials. Additives can include calcium carbonate-rich and magnesium carbonate-rich materials. Various additives can be used to fine-tune the physical appearance and mechanical properties of the composite material, such as colorants such as particles of colored materials, such as, and pigments (e.g., black iron oxide, cobalt oxide and chromium oxide). These paving stones and construction block composite materials exhibit visual patterns similar to stone as well as display compressive strength and water absorption equal to or better than that of stone.
摘要:
A calcium silicate insulation product includes a calcium silicate hydrate matrix that is predominantly but not substantially all xonotlite, for example 51-90 weight percent xonotlite and 10-49 weight percent tobermorite. The insulation product also contains wollastonite, fines of lime and silica, and reinforcing carbon fibers. A method of producing the insulation product includes providing the components, namely - 10-20 weight percent previously-prepared xonotlite, - 35-55 weight percent wollastonite, - 1-5 weight percent carbon fibers, - 15-25 weight percent lime, - 15-25 weight percent silica of the insulation as dry solids, blending the dry solids with water to form a slurry, filter pressing the slurry to form a pressed shape, and curing the pressed shape under steam pressure only until the desired proportions of xonotlite and tobermorite are achieved in the calcium silicate hydrate matrix.
摘要:
The invention provides novel pervious composite materials that possess excellent physical and performance characteristics of conventional pervious concretes, and methods of production and uses thereof. These composite materials can be readily produced from widely available, low cost raw materials by a process suitable for large-scale production with improved energy consumption, desirable carbon footprint and minimal environmental impact.