Abstract:
The invention relates to a method for improving the catalytic properties of a catalyst that exists in the form of a structured monolith and comprises one or more elements selected from the group comprising cobalt, nickel and copper, wherein the catalyst is brought into contact with one or more base compounds selected from the group of alkali, earth alkali and rare earth metals. The invention further relates to a method for hydrogenating compounds comprising at least one unsaturated carbon-carbon, carbon-nitrogen or carbon-oxygen compound, in the presence of a catalyst comprising one or more elements selected from the group comprising cobalt, nickel and copper, wherein the catalyst exists in the form of a structured monolith, characterized in that the catalyst is brought into contact with one or more base compounds selected from the group of alkali, earth alkali and rare earth metals. In addition, the invention relates to the use of a base compound selected from the group of alkali, earth alkali and rare earth metals for improving the catalytic properties of a catalyst, comprising copper and/or cobalt and/or nickel, wherein the catalyst exists in the form of a structured monolith.
Abstract:
The invention relates to catalysts and methods for producing the same, the catalysts being obtainable by contacting a monolithic catalyst support with a suspension which contains one or more insoluble or poorly soluble compounds of the elements selected from the group of elements including cobalt, nickel and copper. The invention further relates to the use of the catalyst of the invention in a method for the hydrogenation of organic substances, especially for the hydrogenation of nitriles and to a method for the hydrogenation of organic compounds, characterized by using a catalyst of the invention in the method.
Abstract:
Disclosed is a method for preparing tertiary amine compounds from primary amines and nitriles in the presence of hydrogen gas and metal catalyst, or metal-containing catalyst composition, at a temperature from about 50°C to about 200°C and at a pressure from about 100 psig to 1500 psig. The primary amines and the nitriles used in the process may be diamines and/or dinitriles, or may be combinations of primary amines and/or nitriles. Also disclosed and novel tertiary amine compounds made by the described method.
Abstract:
Spermine:peptide-based surfactant compounds are disclosed. The compounds are based on a spermine backbone with peptide groups and optionally hydrocarbyl groups linked thereto. Uses of the spermine:peptide-based surfactant compounds and methods for their production are also disclosed.
Abstract:
The present application relates to amine salts of prostaglandin analogs and their uses for the preparation of substantially pure prostaglandin analogs. Specific embodiments relate to amine salts of tafluprost and their uses for the preparation of substantially pure tafluprost.
Abstract:
The present invention relates to a continuous method (P) for preparing diamine, including: reacting the corresponding alkene nitrile with the corresponding monoamine in order to form the corresponding aminonitrile, the monoamine being introduced in molecular excess with respect to the alkene nitrile, wherein the unreacted monoamine is recirculated to the reaction; followed by reducing the aminonitrile produced by hydrogen in the presence of at least one alkali-metal hydroxide, water, and a hydrogenation catalyst; and purifying the diamine.