Abstract:
A quantum yield calculation method uses a quantum yield calculation program for a spectrophotofluorometer. When a quantum yield is calculated using a spectrophotofluorometer 1, a calibration processing unit executes the processing to calibrate a photon number A2 that is a photon number of the fluorescence in a blank measurement state based on a photon number A1 that is the photon number of an excitation light in the blank measurement state and a photon number B1 that is the photon number of an excitation light in the sample measurement state. A quantum yield calculation processing unit calculates a first quantum yield based on a background photon number A2' after a calibration in addition to the photon number A1 of the excitation light in the blank measurement state and the photon number B2 of the fluorescence in the sample measurement state.
Abstract:
A sample (OBJ1) that is an object whose quantum efficiency is to be measured, and a standard object (REF1) having a known reflectance characteristic are each attached to a sample window (2) provided in a plane mirror (5). Based on respective spectrums measured by a spectrometer in respective cases where the sample (OBJ1) is attached and the standard object (REF1) is attached, the quantum efficiency of the sample (OBJ1) is measured. The plane of an opening of an observation window (3) is made substantially coincident with the exposed surface of the sample (OBJ1) or standard object (REF1), so that direct incidence, on the observation window (3), of the fluorescence generated from the sample (OBJ1) receiving an excitation light (L1) and the excitation light (L1) reflected from sample (OBJ1) is prevented.
Abstract:
Die vorliegende Erfindung betrifft eine Vorrichtung und eine Verfahren zur Bestimmung der Photolumineszenzquantenausbeute und weiterer optischer Eigenschaften einer Probe. Es ist Aufgabe der vorliegenden Erfindung, eine Vorrichtung und ein Verfahren anzugeben, mit denen neben der Bestimmung der Quantenausbeute auch eine Bestimmung von Reflexion und Transmission einer Probe schnell, kostengünstig und zuverlässig realisiert werden können. Dazu werden ein erster Spiegel (S1), ein zweiter Spiegel (S2) und ein dritter Spiegel (S3) vorgesehen, wobei der erste Spiegel (S1) und der zweite Spiegel (S2) in Bezug auf die Ulbricht-Kugel (26) fixiert sind und der dritte Spiegel (S3) drehbar gelagert ist, und wobei erster Spiegel (S1), zweiter Spiegel (S2) und dritter Spiegel (S3) derart angeordnet sind, dass das von der Messlichtquelle (10) emittierte Licht in einer ersten Winkelstellung (48) des dritten Spiegels (S3) vom dritten Spiegel (3) zum ersten Spiegel (S1) und nachfolgend vom ersten Spiegel (S1) durch die erste Öffnung (1) in die Ulbricht-Kugel (26) reflektiert und in einer zweiten Winkelstellung (46) des dritten Spiegels (S3) vom dritten Spiegel (3) zum zweiten Spiegel (S2) und nachfolgend vom zweiten Spiegel (S2) durch die zweite Öffnung (5) in die Ulbricht-Kugel (26) reflektiert wird.
Abstract:
A spectrometer 1A is provided with an integrating sphere 20 for observing measured light emitted from a sample S of a measurement target, and a Dewar vessel 50 which retains a medium R for regulating temperature of the sample S, so as to cover the sample S and a second container portion 50b of which is located so as to face the interior of the integrating sphere 20. The sample S can be easily regulated at a desired temperature with the use of the Dewar vessel 50 retaining the medium R so as to cover the sample S. As the second container portion 50b is located so as to face the interior of the integrating sphere 20, the temperature of the sample S is regulated by the medium R, while inhibiting an external ambience around the integrating sphere from affecting the sample S. Therefore, the sample S can be efficiently regulated at a desired temperature.
Abstract:
A spectrophotometric system includes a zoom lens assembly that is mounted for axial translation relative to an integrating sphere. The zoom lens assembly includes first and second focusing lens mounted to an axially movable lens carrier. The lens carrier is positioned intermediate first and second sets of mirrors for reflecting/directing SCE and SCI beams toward fiber ports. A reference beam is also emitted from the integrating sphere and transmitted to a processor, thereby resulting in simultaneous tri-beam measurements. The disclosed spectrophotometric systems may also include an aperture plate detection assembly and/or a sample holder assembly that incorporates a dampening gas spring. The aperture plate detection system includes a detection disk that may include a plurality of pre-positioned sensors that interact with an activating ridge formed on the aperture plate for identification thereof.
Abstract:
An individualized modeling equation for predicting a patient's blood glucose values is generated as a function of non-invasive spectral scans of a body part and an analysis of blood samples from the patient, and is stored on a central computer. The central computer predicts a blood glucose value for the patient as a function of the individualized modeling equation and a non-invasive spectral scan generated by a remote spectral device. If the spectral scan falls within the range of the modeling equation, the predicted blood glucose level is output to the patient. If the spectral scan falls outside the range of the modeling equation, regeneration of the model is required, and the patient takes a number of noninvasive scans and an invasive blood glucose level determination. The computer regenerates the individualized modeling equation as a function of the set of spectral scans and corresponding blood glucose values.
Abstract:
The invention relates to a system for measuring light transmission and/or light reflection properties of a transparent sample sheet, the system comprising a detection assembly and a control unit, wherein the detection assembly comprises an integrating sphere having a sample port, an illumination port, a detection port, an internal light source positioned at the illumination port, and a photodetector coupled to a spectrometer and positioned at the detection port; means to detect radiation coming either directly from the sample port or from the wall of the integrating sphere; an external light source axially aligned with the sample port; means to illuminate with the internal light source or with the external light source; a reference standard, and means to position it at and from the sample port. This system is relatively compact, and can advantageously be used at existing sheet production lines for process and quality control. The invention also relates to a method for measuring light transmission and/or light reflection properties of a transparent sample sheet that applies said system; and to processes of making a sheet, especially an AR-coated glass sheet, comprising said method.