Abstract:
In an foreign body detection apparatus, an optical signal detection unit (1) irradiates a light spot onto a surface of an object to be inspected while scanning the surface by the light spot in a predetermined direction, and receives a reflected beam from the surface of the inspected object to generate a photodetection signal (HF) corresponding to the light intensity of the reflected beam. A foreign body detection unit (2a to 2h) generates a foreign body detection signal (C) appearing with respect to a leader and a trailer in the scanning direction of a foreign body adhering to the inspected object from the photodetection signal (HF). The foreign body detection signal is obtained for example as a difference signal between the photodetection signal (HF) and the delayed photodetection signal (HF) with a predetermined delay time. A foreign body discrimination unit (3) generates a foreign body discriminating signal (H) indicating a region in which the foreign body is present from the foreign body detection signal (C).
Abstract:
An object inspection apparatus includes a terahertz wave supplying unit for generating a terahertz wave and moving a path of the terahertz wave according to time so that the terahertz wave is supplied to an object to be inspected, a focusing lens located between the terahertz wave supplying unit and the object to be inspected to focus the terahertz wave supplied by the terahertz wave supplying unit, a rotating plate having a plate shape and including a plurality of the focusing lenses with different distances from the center thereof, the rotating plate rotating in the circumferential direction so that one of the focusing lenses is located at a path of the terahertz wave according to the path movement of the terahertz wave, and a terahertz wave detecting unit for collecting and detecting a terahertz wave incident to the object to be inspected.
Abstract:
Mit dieser Einrichtung lassen sich Oberflächen zerstörungsfrei und ganzflächig auf Defekte und Kontaminationen untersuchen, wobei sowohl mikroskopisch kleine punkt- oder linienförmige Defekte als auch feinste makroskopische Inhomogenitäten erfasst werden. Zu diesem Zweck ist im Strahlengang zwischen Lichtquelle (2) und Objektiv (9) ein astigmatisches Linsensystem (5) angeordnet, das ein zigarrenförmiges Zwischenbild (31) erzeugt, wobei in Abhängigkeit von dem Zwischenbild (31) der Vorschub beim Abtasten der Oberfläche (10) der auf diese Oberfläche (10) projizierten Länge des Zwischenbildes (31) entspricht. Eine im Strahlengang zwischen Linsensystem (5) und Objektiv (9) angeordnete Dunkelfeldstop-Baugruppe (18) mit einer einstellbaren Dunkelfeldumlenkung (8) , richtet den Beleuchtungsstrahl (1) nach der Umlenkung exakt zentrisch im rechten Winkel durch das Objektiv (9) auf die Oberfläche (10) . Das von der Oberfläche (10) abgestrahlte, im Objektiv (9) gesammelte Licht ist auf einen Photodetektor (19) gerichtet. Eine Auswerteelektronik (21) zerlegt die verstärkten Ausgangssignale des Photodetektors (19) in Messwerte, die von punktförmigen, linienförmigen und flächenförmigen Defekten herrühren. Die Auswerteelektronik (21) ist über eine Recheneinheit (22) mit Peripheriegeräten (23, 24, 25) verbunden, mittels welchen die Gesamtheit aller Messwerte einer Messung dargestellt werden kann.
Abstract:
Bei der Prüfung von Bauteilen (6) aus transparentem Material auf Oberflächenfehler und Einschlüsse wird zum Beleuchten eine Vorrichtung verwendet, bei der das zu prüfende Bauteil um seine Achse drehbar angeordnet ist und mittels eines bewegten Lichtstrahles punktförmig abgetastet wird. Zur Erzeugung des abtastenden Lichtstrahles dient eine, ein paralleles Lichtbündel (19) erzeugende Lichtquelle (1), vorzugsweise ein Laser (1) und ein dieses Lichtbündel periodisch mit einer gegen die Drehzahl des Bauteils hohen Frequenz linear auslenkender Abtaster (3). In Lichtrichtung gesehen hinter dem Abtaster (3) ist eine Sammellinse (4) vorgesehen, welche als f-Theta-Linse ausgebildet ist und deren Brennpunkt im Drehpunkt (11) des Abtasters liegt. Dadurch wird die winkelmäßige Auslenkung des vom Laser gelieferten Lichtbündels durch den Abtaster hinter der Sammellinse in eine Parallelverschiebung des Lichtbündels zwischen zwei Extrempositionen umgewandelt. Zwischen der Sammellinse (4) und dem zu prüfenden Bauteil (6) ist ein verstellbarer Kippspiegel (5) zur Umlenkung des Lichtbündels auf das Bauteil vorgesehen.
Abstract:
A foreign matter detector comprises light signal detecting means (1), foreign matter detecting means (2a to 2h), and foreign matter judging means (3). The light signal detecting means (1) applies a light spot on the surface of an object to be inspected while scanning the light spot in a predetermined direction, receives light reflected from the surface of the object, and generates a light detection signal (HF) corresponding to the amount of light reflected. The foreign matter detecting means (2a to 2h) generates, from the light detection signal (HF), foreign matter detection signals (C) corresponding to the first and last portions, in the scanning direction, of the foreign matter adhering to the object. The foreign matter signal is determined as a signal representing the difference between the light detection signal (HF) and a delay signal (HF1) produced by delaying the light detection signal (HF) by a predetermined time. The foreign matter judging means generates from the foreign matter detection signal (C) a foreign matter judgment signal (H) representing the area where a foreign matter is present.
Abstract:
A double-sided optical inspection system is presented which may detect and classify particles, pits and scratches on thin film disks or wafers in a single scan of the surface. In one embodiment, the invention uses a pair of orthogonally oriented laser beams, one in the radial and one in the circumferential direction on both surfaces of the wafer or thin film disk. The scattered light from radial and circumferential beams is separated via their polarization or by the use of a dichroic mirror together with two different laser wavelengths.