摘要:
Described embodiments provide devices, systems and methods for sequencing liquid flow in response to a driving force by entrapping and releasing gas between volumes of liquid in a controlled manner. In one particular form, a centrifugal "lab on a disk" device is provided to drive liquid flow and sequencing by virtue of the centrifugal force and in one particular form a radially inward bend conduit is used in connection with controllably trapping and releasing gas between liquid volumes.
摘要:
Described embodiments provide devices, systems and methods for sequencing liquid flow in response to a driving force by entrapping and releasing gas between volumes of liquid in a controlled manner. In one particular form, a centrifugal "lab on a disk" device is provided to drive liquid flow and sequencing by virtue of the centrifugal force and in one particular form a radially inward bend conduit is used in connection with controllably trapping and releasing gas between liquid volumes.
摘要:
Described embodiments provide devices, systems and methods for sequencing liquid flow in response to a driving force by entrapping and releasing gas between volumes of liquid in a controlled manner. In one particular form, a centrifugal "lab on a disk" device is provided to drive liquid flow and sequencing by virtue of the centrifugal force and in one particular form a radially inward bend conduit is used in connection with controllably trapping and releasing gas between liquid volumes.
摘要:
A new design of flow regulator is proposed. The device is preferably made of a stack of 3 plates, respectively a top plate including a flexible membrane, a middle plate with pillars and vias and a bottom plate with fluidic ports, micro channels and vias. The principle is based on the deformation of the membrane due to the pressure of the liquid. The membrane goes in contact with the pillars of the middle plate, obstructing gradually the vias of the pillars. The device is preferably designed to keep the flow constant in a predefined range of pressure. The device is dedicated to ultra low flow rate up to 1 ml per day or below, typically for drug infusion. Plastic flow regulators comprise preferably several independent valves coupled in parallel. The membrane plate is therefore made of several flexible membranes obstructing gradually the flow by increasing the pressure. Stress limiters are used to avoid plastic deformation of the membrane. For implanted pump, the use of a flow regulator instead of a flow restrictor has several advantages, including the possibility to reduce significantly the reservoir pressure and to generate directly the pressure during the pump filling by using an elastic drug reservoir.
摘要:
Improved microfluidic devices, systems, and methods allow selective transportation of fluids within microfluidic channels of a microfluidic network by applying, controlling, and varying pressures at a plurality of reservoirs. Modeling the microfluidic network as a series of nodes connected together by channel segments and determining the flow resistance characteristics of the channel segments may allow calculation of fluid flows through the channel segments resulting from a given pressure configuration at the reservoirs. To effect a desired flow within a particular channel or series of channels, reservoir pressures may be identified using the network model. Viscometers or other flow sensors may measure flow characteristics within the channels, and the measured flow characteristics can be used to calculate pressures to generate a desired flow. Multi-reservoir pressure modulator and pressure controller systems can optionally be used in conjunction with electrokinetic or other fluid transport mechanisms.
摘要:
Apparatuses and methods for manipulating droplets on a printed circuit board (PCB) are disclosed. Droplets are actuated upon a printed circuit board substrate surface by the application of electrical potentials to electrodes defined on the PCB. The use of soldermask as an electrode insulator for droplet manipulation as well techniques for adapting other traditional PCB layers and materials for droplet-based microfluidics are also disclosed.
摘要:
A flow controller which uses a combination of hydrostatic pressure and electroosmotic flow to control the flow of a fluid. A driving fluid (1204) whose flow rate is dependent on both hydrostatic pressures and electroosmotic flow can be used (a) directly as a working fluid in an operable device, for example a chromatograph, or (b) to displace a working fluid (1203) from a storage container (625) into an operable device (1301), or both (a) and (b). The driving fluid (1204) can be composed of one or more fluids. Part or all the driving fluid (1204) is passed through an electroosmotic device (100) so as to increase or decrease the flow rate induced by hydrostatic pressure.
摘要:
Improved microfluidic devices, systems, and methods allow selective transportation of fluids within microfluidic channels of a microfluidic network by applying, controlling, and varying pressures at a plurality of reservoirs. Modeling the microfluidic network as a series of nodes connected together by channel segments and determining the flow resistance characteristics of the channel segments may allow calculation of fluid flows through the channel segments resulting from a given pressure configuration at the reservoirs. To effect a desired flow within a particular channel or series of channels, reservoir pressures may be identified using the network model. Viscometers or other flow sensors may measure flow characteristics within the channels, and the measured flow characteristics can be used to calculate pressures to generate a desired flow. Multi-reservoir pressure modulator and pressure controller systems can optionally be used in conjunction with electrokinetic or other fluid transport mechanisms.