Abstract:
The teachings presented herein allow the same sequence of local oscillator waveform sample values to be used for driving two harmonic rejection mixers for which quadrature operation is desired, irrespective of whether the oversampling rate of the sequence is divisible by four or only divisible by two. This ability is obtained by controlling whether the quadrature mixer clocks coincidentally with the ίη-phase mixer, or clocks a half clock cycle out of phase relative to the in-phase mixer. Several advantages attend the contemplated circuit arrangement and method of operation. Example advantages include the improved matching that comes from operating both mixers with the identical waveform sample values, and the improved flexibility in optimizing the harmonic rejection and/or interference- related operation of the mixers over a broader range of frequencies of interest, which flows from having a larger set of usable OSRs.
Abstract:
A direct-digital synthesizer (20) for generating a waveform includes a digital accumulator (22) fed by a phase increment word (X) and a series of clock pulses (CK) for successively adding the phase increment word (X) to produce a series of N bit phase words (Y). A table or trigonometric engine (24) produces sine and cosine digital signals related to the M most significant bits of the phase word (Y) produced by the accumulator (22). A feedback loop (30) is fed by truncation error words (T(Z)) comprising at least a portion of N-M least significant bits (32) of the N bit phase words (Y) producing truncation error compensation words. The feedback loop (30) includes a digital filter (34) and provides a low pass truncation error response to the truncation error having at least one zero in the transfer function thereof at DC. The truncation error response has a transfer function comprising the term (1-az -1 ) where: z is the discrete time frequency variable and a is a unity or non-unity weighting factor. One such filter (34, Fig. 4A) includes an adder (Ao) fed by the truncation error words and a storage device (D) fed by the clock pulses (CK) and by the truncation error words for producing at an output thereof the truncation error words delayed by each one of the clock pulses (CK) fed thereto. The adder (Ao) is fed by the output of the storage device (D) to produce an algebraic sum of the truncation error words fed to the adder (Ao) and the delayed truncation error words.
Abstract:
In order to effectively reduce a memory size of each of two memories (60,62) provided in an arrangement for converting a binary input data into the corresponding in-phase and quadrature signals, a memory output controller(64) and a sequential logic (66) are provided. The memory output controller (64) includes two polarity control circuits (76,78) and two input data selectors (80,82). The two polarity control circuits (76, 78) are respectively coupled to the two memories (60,62), while the two input data selectors (80,82) are preceded by and coupled to both of the two polarity control circuits (76,78). Each of the two polarity control circuits (76,78) reverses the polarity of the output of the associated memory according to the output of the sequential logic. On the other hand, each of the two input data selectors (80,82) is arranged to selectively acquire the outputs of the two polarity control circuits (76,78) depending on the output of the sequential logic (66).
Abstract:
Diese Schaltung liefert zu ein und demselben digitalen Argument (p) aus einem beliebigen Quadranten der Sinus- und Cosinusfunktion gleichzeitig die entsprechenden Sinus- und Cosinusfunktionswerte (s..,c..). Dazu dient im wesentlichen der Festwertspeicher (rm), in dessen beiden Speicherhälften (h1, h2) die vorzeichenstellenlosen Funktionswerte des ersten Halbquadranten bzw. des zweiten Halbquadranten der Cosinusfunktion einmal in Richtung zunehmender und einmal in Richtung abnehmender Argumente (p) abgelegt sind. Dabei ist die Stellenzahl (m) des Arguments (p) um drei größer als die Stellenzahl (n) der Funktionswerte inkl. von deren Vorzeichenstelle. Durch geschickte Invertierung der Adressen und der ausgelesenen Funktionswerte mittels der Vielfachinverter (i1, i2, i3) in Verbindung mit den Vielfachumschaltern (u1..u5) lassen sich die Sinus- und Cosinusfunktionswerte sowohl im Einer- als auch im Zweierkomplementcode für alle vier Quadranten erzeugen. Wird das Argument (p) mittels des Akkumulators (ak) gebildet, an dessen Eingang das frequenzbestimmende Digitalwort (f) liegt, so ist die Digitalschaltung ein digitaler Sinus/Cosinusoszillator.
Abstract:
A method of generating electrical signal waveforms. A generator includes a digital processing circuit, a memory circuit in communication with the digital processing circuit defining a lookup table, a digital synthesis circuit in communication with the digital processing circuit and the memory circuit, and a digital-to-analog converter (DAC) circuit. The method includes generating a first and second digital electrical signal waveforms, combining the first and second waveforms to form a combined waveform, modifying the combined waveform to form a modified waveform The peak amplitude of the modified waveform does not exceed a predetermined amplitude value. The method includes generating a second waveform that is a function of the first waveform. The method includes modifying a frequency of the first waveform to form a frequency modified first waveform and combining the frequency modified first and second waveforms to form a combined waveform.
Abstract:
Die Erfindung betrifft einen digitalen, frequenz- und amplitudenvariablen Drehstromgenerator (1) mit mindestens einem Sinusgenerator (2, 3, 4), der insbesondere als Digital/Analog-Wandler ausgebildet ist, und mindestens einem digital gesteuerten Oszillator (6), von denen die Sinusgeneratoren (2, 3, 4) mit variabler Frequenz angesteuert werden, wobei Amplitudenwerte erzeugt werden, indem Amplitudenzähler (34) synchron zu Zähler (31) für Phasenwerte hoch- oder runtergezählt werden. Ein Ordinatenspeicher (33) enthält die Amplitudenwerte adressierbar, wobei die Adressen der Amplitudenwerte von Zählern (31, 34) angegeben werden. Eine Frequenzsteuerung ist vorgesehen, die zwischen einer einstellbaren Start- und einer Endfrequenz dem digital gesteuerten Oszillator (6) die Variation der Frequenzen vorgibt, und eine Schnittstelle (15), die zur Bestimmung der Frequenzen und Amplituden der Signale der Sinusgeneratoren (2, 3, 4) Werte entgegennimmt oder ausgibt.
Abstract:
A digital chirp generator system comprises a plurality of digital chirp generator elements each capable of producing a phase sample at a given relatively low bandwidth and being operable in parallel to produce a plurality of phase samples for being interleaved to provide a sequence of samples corresponding to the phase samples of a single chirp signal at a correspondingly higher bandwidth.
Abstract:
A control circuit comprising a read-only memory (3) has its storage area divided into two areas each containing the same number of addressable words. By arranging that input of a single address signal (An+1) causes a change from addressing a particular word in one area to addressing a corresponding word in the other area, and by programming a fixed difference in value between corresponding words in the two areas causes a step function in the output. Using a digital to analogue converter (1) on the output of the circuit permits a step change in a voltage output (1) to be provided to (eg) a voltage controlled oscillator (4). A control circuit using a read-only memory as a voltage comparator is also disclosed.