摘要:
Cathode materials for use in thermal batteries are disclosed. The cathode material includes a primary active material and an amount of a bi-metal sulfide such as CuFeS2. Batteries (e.g., thermal batteries) that contain such cathode materials are also disclosed.
摘要:
A molten sodium secondary cell charges at a high temperature and discharges at a relatively lower temperature. The cell includes a sodium anode and a cathode. A sodium ion conductive solid membrane separates the cathode from the sodium anode and selectively transports sodium ions. A solar energy source includes a photovoltaic system to provide an electric charging potential to the sodium anode and the cathode and a solar thermal concentrator to provide heat to the cathode and catholyte composition to cause the molten sodium secondary cell to charge at a temperature in the range from about 300 to 800 °C. The cell has a charge temperature and a charge voltage and a discharge temperature and a discharge voltage. The charge temperature is substantially higher than the discharge temperature, and the charge voltage is lower than the discharge voltage.
摘要:
Cathode materials for use in thermal batteries are disclosed. The cathode material includes a primary active material and an amount of a bi-metal sulfide such as CuFeS2. Batteries (e.g., thermal batteries) that contain such cathode materials are also disclosed.
摘要:
A composition is provided that includes a ternary electrolyte having a melting point greater than about 150 degree Celsius. The ternary electrolyte includes an alkali metal halide, an aluminum halide and a zinc halide. The amount of the zinc halide present in the ternary electrolyte is greater than about 20 mole percent relative to an amount of the aluminum halide. An energy storage device including the composition is provided. A system and a method are also provided.
摘要:
An intermediate temperature molten sodium - metal halide rechargeable battery utilizes a molten eutectic mixture of sodium haloaluminate salts having a relatively low melting point that enables the battery to operate at substantially lower temperature compared to the traditional ZEBRA battery system and utilize a highly conductive NaSICON solid electrolyte membrane. The positive electrode comprises a mixture of NaX and MX, where X is a halogen selected from Cl, Br and I and M is a metal selected Ni, Fe, and Zn. The positive electrode is disposed in a mixed molten salt positive electrolyte comprising at least two salts that can be represented by the formula NaAlX'4-δX"δ, where 0
摘要:
Disclosed are developments in high temperature fuel cells including ionic liquids with high temperature stability and the storage of inorganic acids as di-anion salts of low volatility. The formation of ionically conducting liquids of this type having conductivities of unprecedented magnitude for non-aqueous systems is described. The stability of the di-anion configuration is shown to play a role in the high performance of the non-corrosive proton-transfer ionic liquids as high temperature fuel cell electrolytes. Performance of simple H2(g)electrolyte/O2(g) fuel cells with the new electrolytes is described. Superior performance both at ambient temperature and temperatures up to and above 200°C are achieved. Both neutral proton transfer salts and the acid salts with HSO-4 anions, give good results, the bisulphate case being particularly good at low temperatures and very high temperatures. The performance of all electrolytes is improved by the addition of a small amount of involatile base of pKa value intermediate between those of the acid and base that make the bulk electrolyte. The preferred case is the imidazole-doped ethylammonium hydrogensulfate which yields behavior superior in all respects to that of the industry standard phosphoric acid electrolyte.
摘要:
An intermediate temperature sodium-halogen secondary cell that includes a negative electrode compartment housing a negative, molten sodium-based electrode and a positive electrode compartment housing a current collector disposed in a highly conductive molten positive electrolyte. A sodium halide (NaX) positive electrode is disposed in a molten positive electrolyte comprising one or more AlX3 salts, wherein X may be the same or different halogen selected from Cl, Br, and I, wherein the ratio of NaX to AlX3 is greater than or equal to one. A sodium ion conductive solid electrolyte membrane separates the molten sodium negative electrode from the molten positive electrolyte. The secondary cell operates at a temperature in the range from about 80° C to 210° C.
摘要:
An electrochemical battery that exchanges energy with an external device. The battery includes a container (22) having walls and containing a positive electrode (16), a negative electrode (14) and an intervening electrolyte (20), the electrodes and electrolyte existing as liquid material layers in a vertical stack within the container walls at the operating temperature of the battery. One of the positive electrode (16) and the negative electrode (14) is disposed over the electrolyte. A lid (26) closes a top of the container (22); a positive current collector (23) is in electrical contact with the positive electrode (16); and a negative current collector (27) is in electrical contact with the negative electrode (14). Positive and negative current collectors (23, 27) are adapted for connection to the external device to create a circuit through which current flows. The current collector is in contact with the one electrode is suspended from the lid (26) and comprises a structure (62) configured to hold one of the electrodes away from the walls of the container.
摘要:
An intermediate temperature sodium-halogen secondary cell that includes a negative electrode compartment housing a negative, molten sodium-based electrode and a positive electrode compartment housing a current collector disposed in a highly conductive molten positive electrolyte. A sodium halide (NaX) positive electrode is disposed in a molten positive electrolyte comprising one or more AlX3 salts, wherein X may be the same or different halogen selected from Cl, Br, and I, wherein the ratio of NaX to AlX3 is greater than or equal to one. A sodium ion conductive solid electrolyte membrane separates the molten sodium negative electrode from the molten positive electrolyte. The secondary cell operates at a temperature in the range from about 80° C to 210° C.