Abstract:
A first aspect of the invention relates to an electrocatalytically active nanocomposite material, comprising electrically conductive carbon material decorated with platinum nanoparticles or nanoclusters anchored thereon. The decorated electrically conductive carbon material is overcoated with catecholamine-based polymer. Another aspect of the invention relates to a method for producing electrocatalytically active nanocomposite material.
Abstract:
Realized are an electrochemical element and a solid oxide fuel cell that have a dense electrolyte layer and that have excellent durability and robustness, and methods for producing the same. An electrochemical element includes: a metal substrate 2 having a plurality of through holes 21; an electrode layer 3 provided over a front face of the metal substrate 2; and an electrolyte layer 4 provided over the electrode layer 3, wherein the through holes 21 are provided passing through the front face and a back face of the metal substrate 2, the electrode layer 3 is provided in a region larger than a region, of the metal substrate 2, in which the through holes 21 are provided, and the electrolyte layer 4 has a first portion 41 coating the electrode layer 3, and a second portion 42 that is in contact with the front face of the metal substrate 2.
Abstract:
Provided is a catalyst for fuel cell which has a high catalytic activity and enables maintaining the high catalytic activity. Disclosed is an electrode catalyst for fuel cell comprising a catalyst carrier containing carbon as a main component and a catalytic metal supported on the catalyst carrier, wherein the catalyst has the R' (D'/G intensity ratio) of 0.6 or less, which is the ratio of D' band peak intensity (D' intensity) measured in the vicinity of 1620 cm -1 relative to G band peak intensity (G intensity) measured in the vicinity of 1580 cm -1 by Raman spectroscopy, and the volume ratio of a water vapor adsorption amount relative to a nitrogen adsorption amount at a relative pressure of 0.5 in adsorption isotherm is 0.15 or more and 0.30 or less.
Title translation:LEITFÄHIGERFILM,GASDIFFUSIONSSCHICHTFÜRBRENNSTOFFZELLEN,KATALYSATORSCHICHTFÜRBRENNSTOFFELLEN,ELEKTRODEFÜRBRENNSTOFFZELLEN,MEMBRANELEKTRODENANORDNUNGFÜRBRENNSTOFFZELLEN UND BRENNSTOFFZELLE
Abstract:
Provided is a conductive film having excellent conductivity and gas diffusivity that is useful, for example, as a material forming a gas diffusion layer or a catalyst layer of an electrode in a fuel cell. The conductive film includes carbon nanotubes having an average diameter (Av) and a diameter standard deviation (Ã) satisfying a relationship 0.60 > (3Ã/Av) > 0.20 and a conductive carbon that is different from the carbon nanotubes. A content ratio of the carbon nanotubes relative to the conductive carbon (carbon nanotubes/conductive carbon) is from 1/99 to 99/1 as a mass ratio.
Abstract:
This electrode for fuel cell comprises: carbon nanotubes; a catalyst for fuel cell supported on the carbon nanotubes; and an ionomer provided to coat the carbon nanotubes and the catalyst for fuel cell, wherein when a length of the carbon nanotubes is represented by La [µm] and an inter-core pitch of the carbon nanotubes is represented by Pa [nm], the length La and the inter-core pitch Pa satisfy two expressions given below: 30 ‰¤ La ‰¤ 240; and 0.351×La+75 30 ‰¤ Pa 30 ‰¤ 250.
Abstract:
L'invention se rapporte à une cathode (1) de pile métal/air comprenant au moins une couche active (2) réalisée dans un matériau actif et présentant un côté air (A) et un côté métal (M), un collecteur de courant (3), et une membrane hydrophobe (4) réalisée dans un matériau hydrophobe et déposée sur le côté air (A) de la couche active (2). Ledit matériau hydrophobe présente une structure poreuse et a pénétré dans le côté air (A) de la couche active (2) de manière à former, entre la membrane hydrophobe (4) et la couche active (2), une zone d'interpénétration (Z) du matériau hydrophobe dans le matériau actif dans laquelle existe un gradient de concentration en matériau hydrophobe diminuant dans le sens entrant de l'air dans la cathode.
Abstract:
The invention relates to nanoparticles comprising at least one platinum compound comprising at least platinum and at least one rare earth, said rare earth being present in an oxidised form, which are especially useful for the catalysis of the dioxygen reduction reaction (DRR) in an acidic medium. The invention also relates to the methods for the production thereof. The invention further relates to a cathode comprising said nanoparticles and to the use thereof especially in a hydrogen fuel cell, also called a PEMFC.
Abstract:
Provided is a conductive film having excellent conductivity and gas diffusivity that is useful, for example, as a material forming a gas diffusion layer or a catalyst layer of an electrode in a fuel cell. The conductive film includes carbon nanotubes having an average diameter (Av) and a diameter standard deviation (σ) satisfying a relationship 0.60 > (3σ/Av) > 0.20 and a conductive carbon that is different from the carbon nanotubes. A content ratio of the carbon nanotubes relative to the conductive carbon (carbon nanotubes/conductive carbon) is from 1/99 to 99/1 as a mass ratio.